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Abstract

Energy efficiency and positional accuracy are often contradictive goals. We propose to decrease power consumption
without sacrificing significant accuracy by developing an energy-aware localization that adapts the sampling rate to target’s
mobility level. In this paper, an energy-aware adaptive localization system based on signal strength fingerprinting is
designed, implemented, and evaluated. Promising to satisfy an application’s requirements on positional accuracy, our
system tries to adapt its sampling rate to reduce its energy consumption. The contribution of this paper is fourfold. (1)
We have developed a model to predict the positional error of a real working positioning engine under different mobility
levels of mobile targets, estimation error from the positioning engine, processing and networking delay in the location
infrastructure, and sampling rate of location information. (2) In a real test environment, our energy-saving method solves
the mobility estimation error problem by utilizing additional sensors on mobile targets. The result is that we can improve
the prediction accuracy by 56.34% on average, comparing to algorithms without utilizing additional sensors. (3) We fur-
ther enhance our sensor-enhanced mobility prediction algorithm by detecting the target’s moving foot step and then esti-
mate the target’s velocity. This method can improve the mobility prediction accuracy by 49.81% on an average, comparing
to previous sensor-enhanced mobility prediction algorithm. (4) We implemented our energy-saving methods inside a work-
ing localization infrastructure and conducted performance evaluation in a real office environment. Our performance results
show as much as 68.92% reduction in power consumption.
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1. Introduction

Advances in sensor network technologies enable
an array of applications in consumer electronics.
Emerging from this trend are an increasing number
of commercial and experimental deployments of
.
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sensor networks for object tracking, such as asset
tracking in warehouses, patient monitoring in
medical facilities, and using location to infer activi-
ties of daily living (ADL) at home. Location infor-
mation of the objects is essential for these types of
applications.

Traditional localization research [11,13,14,17]
concentrated on improving the accuracy of pin-
pointing the spatial position of a target. However,
practical deployment of localization systems shows
that positional accuracy and energy efficiency are
of equal importance, especially in the context of
sensor networks where energy is a premium.
Energy efficiency of mobile units (e.g., tags or
badges) attached to the tracked targets is critical
for any practical deployment. A highly accurate
localization system may be of little use if it
requires frequent recharging of the mobile units.
Therefore, both positional accuracy and energy
efficiency are necessary in the design of localization
systems.

Recent work addressed the issue of energy
efficiency in localization systems. For examples,
object-tracking sensor network systems [1,2,16]
found that energy efficiency and positional accuracy
are often two contradictory goals. By changing
sampling rate1 of location information, a localiza-
tion system can trade higher energy consumption
for better positional accuracy. Sampling rate here
is defined as the rate at which the localization infra-
structure and its mobile units are triggered to
perform necessary communication and computa-
tion in determining positions. Furthermore, these
systems have identified a number of basic energy-
saving solutions that adaptively reduce the sam-
pling rate with little impact on positional accuracy.
Their general mechanisms are to (1) detect or
predict the mobility pattern of a tracked target,
and (2) then dynamically adjust the sampling rate
accordingly to a changing mobility pattern. For
example, when a tracked target changes its position
slowly, the sampling rate can be reduced for better
energy conservation without losing much positional
accuracy.

There are two main drawbacks in the existing
solutions. First, current adaptation mechanisms,
although dynamic, calculate the sampling rate based
1 Sampling rate is defined as the rate at which the localization
infrastructure and its mobile units are triggered to perform
necessary communication and computation in determining
positions.
on heuristics. There is no formal analysis of posi-
tional error due to signal noise, communication
delay, and sampling delay such that given the
required positional error-bound specified by the
applications, the system can derive the just right

sampling rate to provide accurate enough position
information, minimizing the sampling rate, and in
turn minimizing the energy consumption.

Second, the mobility prediction of current solu-
tions is based on the estimated position informa-
tion. The velocity is obtained by taking the two
most recent estimations and dividing the distance
moved by the time elapsed. The predicted moving
velocity is inherently inaccurate due to the position
estimation errors. The adverse effect is particularly
significant when the object is static. The network
might continue to sample frequently thinking the
object is moving due to differences between consec-
utive position estimations.

Furthermore, existing solutions have been imple-
mented and tested only in simulations. Given a lack
of real deployment, assessing actual performance of
their solutions in real environments is difficult. In
this work, we not only propose a positional error
model and a mechanism to improve the mobility
prediction, but also provide an implementation
and evaluation of our energy-saving methods within
a real localization system, tested in a real office envi-
ronment. More specifically, our energy-saving
methods (1) enable an application to specify an
error tolerance requirement and then (2) dynami-
cally adapt the sampling rate for quasi-optimal
energy saving while meeting the application’s error
tolerance requirement.

This paper makes the following four
contributions:

� We developed an accurate positional error model

to predict the positional error of a real working
positioning engine under different mobility levels
of mobile targets, estimation error from the posi-
tioning engine, processing and networking delay
in the localization infrastructure, and sampling
rate of location information. This model forms
the basis for developing our energy-saving meth-

ods on how to adapt sampling rate of location
information while conforming to application’s
positional requirement.
� In real test environment, we found that even a

small amount of estimation error from a posi-
tioning engine can significantly impact the predic-
tion accuracy of a target’s mobility, therefore,



Fig. 1. Sampling error sources.
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causing poor results in sampling rate adaptation.
Our energy-saving method solves the problem by
utilizing additional sensors on mobile targets.
� We improve our sensor-enhanced mobility pre-

diction algorithm which utilizes the sensor as
1-bit state indicator that tells if the target is sta-
tionary or not. By detecting the target’s foot step
to estimate the target’s velocity, we could further
improve the mobility prediction accuracy by
49.81% on average, comparing to previous sen-
sor-enhanced mobility prediction algorithm.
� We implemented our energy-saving methods

inside a working localization infrastructure and
conducted a performance evaluation in a real
office environment. Our performance results
shown as much as 68.92% reduction in power
consumption while the positional accuracy is
maintained at the same level.

The remainder of this paper is organized as fol-
lows. Section 2 formulates the energy-saving
problem and develops an accurate positional error
model to predict the positional accuracy in our
localization system. Section 3 presents the design
and implementation of our energy-saving solutions
based the developed positional error model. Section
4 describes experimental setups and shows perfor-
mance results of our systems in a real working envi-
ronment. Section 5 discusses related work. Section 6
draws our conclusion and future work.

2. Rationale

In this section, we first formulate the problem of
our study. Following a brief description of the
positioning engine used in the system, we present
the model to predict positional error in our localiza-
tion system. This model is then used to derive our
energy-saving methods.

2.1. Problem formulation

Given a tracked object (O), an application can
specify a tolerable amount of positional error (D)
measured in distance. The positional error is defined
as the difference between the actual (ground-truth)
position and the reported from a positioning engine.

2.1.1. Problem statement

Given the specified positional error tolerance D
from an application on a tracked object O, develop
energy saving methods that provide the maximum
amount of energy saving while minimizing the prob-
ability of exceeding the positional error bound D.

Our energy-saving methods reduce energy con-
sumption by dynamically adapting the sampling
rate of location information based on a positional
error model. Our rate adaptation can achieve good
performance by accurately predicting the mobility
level of the tracked object using sensors attached
on mobile targets. Note that no prediction is 100%
correct; therefore, there will be probability of occa-
sionally exceeding the specified positional error
bound. Our energy-saving methods aim at minimiz-
ing this non-conformance rate.
2.1.2. Performance metrics

We can define the following two performance
metrics from the above problem statement:

� Energy consumption: it measures the amount of
power consumption on a tracked mobile target
under an energy-saving method and
� Non-conformance rate: it is computed as the

probability of occurrences when the positional
error exceeds the application’s error tolerance
requirement.
2.2. Positional error model

The overall positional error comes from two
error sources in a localization system shown in
Fig. 1. The first source is the estimation error from
a positioning engine when it calculates the position
of a tracked object. The engine may think the object
is at Pe1 instead of Pt1 because of measurement
problems. The second source is similar to the fresh-

ness problem of location sample within a sampling
interval. This is illustrated in Fig. 1. Two consecu-
tive position samples pe1 and pe2 are calculated for
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a moving target at times t1 and t2. If an application
requests the position of this moving target at time ta

and t1 < ta < t2, the position provided to the appli-
cation is pe1, which is no longer the most up-to-date
position of this mobile target. In other words, even
when the position information estimated by a posi-
tioning engine is perfect at the sampling time, the
application might still experience positional error
that is proportional to the length of the sampling
interval, also called the delay access error.

Before deriving the model for positional error, we
provide a brief description of how our localization
system works and explain any associated parame-
ters that impact its positional accuracy.

Our localization system is composed of infra-
structure and mobile components. The infrastruc-
ture component consists of beacon nodes installed
on the ceiling of a deployed environment. These
beacon nodes are made of Taroko motes.2 These
beacon nodes use Zigbee radio to periodically
broadcast beacon packets containing their beacon-
IDs. Since beacon nodes are hardwired to the
building’s power source, energy saving for the infra-
structure component is not our target.

The mobile component consists of Taroko motes
carried as badges by tracked persons. Each badge
(Taroko mote) is attached by a customized sensor
board quipped with an accelerometer (ADXL330)3

to detect the tracked target’s mobility level. Since
each badge runs on battery, its energy consumption
is our target. Each badge can take out a record of
the receiving power of beacon packets, and a sensor
network infrastructure relays this record, pairs of
beacon-id and signal-strength back to our position-
ing engine which is running on a remote server. This
positioning engine was developed previously in our
lab. It runs a hybrid algorithm combining signal
strength (SS) fingerprint and SS propagation model.
Once the positioning engine collects enough SS infor-
mation from a mobile badge, it estimates the badge’s
current position. The current position is forwarded to
a location middleware, which then reports the current
position to the application. At the same time, our
energy-saving methods calculate a sleep time for a
mobile badge, during which the radio interface on
the mobile badge can be turned off to conserve power.

The details of positioning algorithm [15] are not
the focus here. Instead, the points are: (1) our local-
2 http://www.chnds.com.tw/index_e.html.
3 http://www.analog.com/en/prod/0,2877,ADXL330,00.html.
ization system is not perfect and it produces estima-

tion error, and (2) there is a processing and

networking delay between the time when a mobile
badge takes SS measurements and the time when
the positioning engine calculates the badge’s current
position.

Based on the above description, we develop the
following model to predict the positional error in
our localization system:

overall error ¼ estimation error þ ðpn delay

þ sleep timeÞ � target velocity: ð1Þ

The estimation_error measures the difference in
length between the ground-truth position and the
estimated position from our positioning engine.
The pn_delay denotes the processing and network-
ing delay between the time of SS measurements on
a mobile badge and the time a position is calculated
on a server. Based on our experimental measure-
ment, this delay is relatively small. Therefore, the
pn_delay is considered as a known constant given
by a localization infrastructure. On the other hand,
estimation_error is an unknown variable that can
dynamically change based on a localization infra-
structure. In our current implementation, we use
an average positional error of 3 m for our localiza-
tion system. The performance of our localization
system is plotted in Fig. 3, showing its position error
cumulative probability distribution.

The target_velocity denotes the current moving
speed of a mobile badge. Since it is an unknown
dynamic variable, we need to develop a prediction

heuristic to estimate its current value. The sleep_time

is a time interval in which the badge turns off its radio
interface to conserve power. At the end of the time
interval, the badge wakes up for the next position
sampling. The sleep_time is a control parameter in
which our energy-saving methods trade higher
energy reduction for less positional accuracy.

The second term on the right-hand side of Eq. (1)
estimates the distance that a mobile badge traveling
at target_velocity can move away from the last sam-
pled position. Note that the second term reaches
peak at the end of a sampling interval. Therefore,
the overall_error approximates an upper bound on
the positional error within a sleep_time interval.
2.3. Energy-saving solutions

By setting the error tolerance (D) from an appli-
cation equal to the overall error in Eq. (1), we

http://www.chnds.com.tw/index_e.html
http://www.analog.com/en/prod/0,2877,ADXL330,00.html


Table 1
Parameters in the positional error model

Description Parameters

Control parameter (adjusted by our energy-
saving methods)

sleep_time

Known system parameter (given by a
localization system)

pn_delay,

estimation_error

Unknown variable (required prediction) target_velocity

Application specified input error_tolerance

Fig. 2. System architecture.
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obtain the longest possible sleep_time for a mobile
badge while meeting the specified positional error
tolerance. The reason for choosing the longest sleep
time is to maximize the amount of power saving
since the radio on the mobile badge is turned off.
Therefore, this longest sleep_time is calculated using
the following equation:

sleep time ¼ ðerror-tolerance � estimation-errorÞ
target velocity

� pn delay:

ð2Þ

There is one unknown variable in Eq. (2): tar-

get_velocity. Since this unknown variable is dynamic
over time, our energy-saving methods need to con-
tinuously predict target_velocity’s current value
before using this equation. In addition, our energy-
saving methods also need to change sleep_time based
on current predicted values of target_velocity. We
provide a summary of all parameters in the posi-
tional error model in Table 1. These parameters
are categorized into a control parameter, known sys-
tem parameters, an unknown variable requiring pre-
diction, and application specified input.

3. Design and implementation of power-saving

methods

In this section, we describe the design and imple-
mentation of our energy-saving localization system.
The system architecture is shown in Fig. 2. It con-
sists of three components: a positioning engine, a
mobility predictor, and a sampling rate adaptor.
The system has three main steps. In the first step,
a positioning engine is invoked to estimate a mobile
badge’s position based on its SS measurements. In
the second step, the mobility predictor estimates
the mobile badge’s current velocity. The inputs to
the velocity prediction come from two sources: (a)
recent location history and (b) acceleration readings
from an accelerometer sensor attached to a mobile
badge. In the third step, the sampling rate adaptor
computes a sleep time based on the positional error
model defined in Eq. (2). If the mobility prediction
is accurate, this time interval is also the longest pos-
sible sleep time that meets the positional accuracy
required by an application.

We have developed four possible energy-saving
methods for calculating the sleep time interval: (1)
periodic sampling (PS), (2) adaptive sampling with
constant-velocity (ASCV), (3) sensor-assisted adap-
tive sampling with mobility detection (SAASMD),
and (4) sensor-assisted adaptive sampling with foot-
step detection (SAASFD). These four methods are
described in details below.

3.1. Periodic sampling (PS)

This method calculates a fixed sleep time regard-
less of changing mobility level of a tracked object.
This sleep time is calculated by first setting the
badge’s velocity to an application-specific value,
and then applying Eq. (2) to compute a fixed period
for the sleep time. This application-specific value
should be a conservative estimation that approxi-
mates a fast moving velocity capable of a tracked
object. For example, if the tracked object is a person
in an office environment, the velocity is set at a fast
walking speed of a sporty office worker, which is
1.5 m/s.

Given that periodic sampling uses a conservative
velocity (i.e., an upper bound velocity), it can
achieve good conformance rate; however, this
achievement is at the expense of much higher power
consumption as shown in Section 4.1. Since periodic
sampling does not attempt to predict a user’s cur-
rent mobility level, this fixed sleep-time is likely to
be much lower than the optimal sleep-time com-
puted from the tracked object’s current mobility.
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3.2. Adaptive sampling with constant-velocity

(ASCV)

This method is based on a constant velocity
model to predict the current velocity of a mobile
badge. The current velocity is calculated as the
instantaneous velocity from the most recent two
location samples according to the following
equation:

target velocity ¼ positionðtiÞ � positionðti�1Þ
ti � ti�1

: ð3Þ

A potential problem with this prediction heuristic
is that a small amount of estimation error from the
positioning engine significantly impacts the predic-
tion accuracy, causing either under-estimation or
over-estimation of velocity. Consider the example
that our positioning engine tracks a moving person
at a normal walking velocity over an office building
corridor. Our positioning engine can produce esti-
mation error. Fig. 3 shows its accuracy and preci-
sion profile. It can limit positional error to 4 m
with 80% probability of accuracy. In the case of this
moving person, we have observed common occur-
rences. For example, in one case, the positioning
engine is not sensitive enough; it estimates this mov-
ing person’s position at the coordinate (10,10) at
current time and the same coordinate one second
Fig. 3. Position error cumulativ
before. The predicted velocity becomes zero with
constant-velocity prediction. Plugging this zero
velocity into Eq. (2) returns an infinite sleep-time,
meaning that the mobile target would turn off its
radio interface forever, which is obviously wrong.
This illustrates a need to set an upper bound to pre-
vent a mobile target from sleeping too long and
missing application’s positional accuracy require-
ment, either due to prediction error or due to the
tracked objects temporarily staying stationary.

In another case, the positioning engine can pro-
duce different direction of errors in two subsequent
position estimations. The most recent estimation is
the coordinate (20 � error,20), and the previous
one taken at one second ago is (21 + error, 20).
The predicted velocity would be over-estimated by
twice the amount of errors. If the error is large,
applying Eq. (2) results in a very short sleep_time
close to zero. This illustrates a need to set a lower
bound to prevent a mobile target from sleeping
too little and wasting energy.

There are many ways to obtain the upper and
lower bounds. One possibility is for application
users to provide a reasonable mobility bound on
the tracked objects. For examples, if the tracked
objects are people, we can use a fast person’s run-
ning speed as an upper bound. A second possibility
is to learn the upper and lower bounds of the
e probability distribution.
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tracked objects by observing their mobility patterns
over time. We can start by choosing conservative
values for upper and lower bounds, and then grad-
ually adjust to the correct values.

3.3. Sensor-assisted adaptive sampling with mobility

detection (SAASMD)

This method solves the problem of estimation
errors from a positioning engine, especially when
tracked objects are in a stationary mode. Since sta-
tionary mode offers the highest opportunity for
energy saving, this adaptive sampling method is
developed specifically for this purpose.

Consider the example of typical office workers
who spends most of their days sitting in front of
their computer. Given a lack of movement, their
mobility or velocity should be zero or close to zero
most of the time. Again, since our positioning
engine produces estimation errors, their estimated
positions from a position engine commonly jump
around within a radius of 2–4 m at each subsequent
location sampling. Assume that the sleep_time is set
to be 2–4 s, the predicted velocity is 1 m/s. To
address this issue, we look for low-cost and low-
energy sensors to assist mobility prediction.

Our chosen sensors are accelerometers. Readings
from an accelerometer are interpreted as a 1-bit
state indicator that tells whether the mobile target
is moving or stationary. This can be done through
simple comparisons of accelerometer readings if
they exceed a certain movement threshold and per-
sist over a time window. If the accelerometer shows
a stationary target, the badge can continue to sleep
to conserve power. If the accelerometer detects
movement on a mobile target, it triggers the badge
to perform location sampling based on the previous
adaptive method.

3.4. Sensor-assisted adaptive sampling with foot-step

detection (SAASFD)

Since the SAASMD method mentioned above
uses only a 1-bit state indicator predicting if a
mobile target is stationary or moving, it does not
provide an estimated velocity of the mobile target.
The SAASFD method uses accelerometer readings
to count the number of steps of a moving target
(i.e., a person), and then estimate his/her moving
velocity from step counts. In the first step, step
counting is done by detecting the zero crossing of
accelerometer readings. In the second step, moving
distance is obtained by multiplying the step count
by the average human step size [18]. In the third
steps, velocity is estimated as the traveled distance
over the traveled time interval. Fig. 4 shows the
velocity estimated from our foot-step detection
method (in a solid red line4) versus the real moving
velocity (in a dotted blue line). This accelerometer-
based velocity estimation achieves accurate results
with a small average positional error of 2 m.
4. Performance evaluation

In this section, we describe experimental setting
and analyze performance results of our energy-
saving localization system in a real working
environment.
4.1. Experimental setup

To evaluate our adaptive sampling methods, we
have conducted experiments to show and compare
the effectiveness of periodic and adaptive sampling

methods by changing values in the impact factors.
These impact factors are: (1) application-specified
error tolerances and (2) the mobile target’s mobility
levels. Two performance metrics below are mea-
sured and compared:

� Unit power consumption: It measures the average
power consumption per second on a tracked
badge using a power-saving method. We have
considered two approaches to measure unit
power consumption in a real working environ-
ment. The first approach is to connect a mobile
badge to a power meter. The size and the weight
of the power meter, however, make this approach
infeasible. The second approach is to collect real
data and code traces from mobile badge while it
is running in a real environment and then feed
the traces to a realistic power estimation tool
for Taroko called PowerTOSSIM [5]. Impor-
tantly, we would like to stress that our perfor-
mance results and collected traces are not based
on simulation, but on real implementations.
� Non-conformance rate: It measures the percent-

age where the reported location from our locali-
zation system to an application exceeds the
specified error tolerance.



Fig. 4. Estimated velocity by counting foot steps.
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Our experimental environment is on the third
floor of National Taiwan University’s computer
science department building. We incorporated our
energy-saving methods in a Zigbee-based localiza-
tion system developed prior to this work and
described earlier in Section 2. The floor layout of
the experimental environment is shown in Fig. 5.
The triangles mark the locations of beacon nodes.
They are placed approximately 6 m apart. The cur-
rent mobile badge is shown in Fig. 6.

During the experiment, a tracked person wears a
mobile badge and conducts his/her activities only
within the shaded area. The area includes corridors,
a meeting room, a lab office, and a restroom. Table
2 shows six different scenarios with different levels of
user mobility. For example, scenario #3 corre-
sponds to relatively high user mobility of 70%. In
such a scenario, a user typically walks along a cor-
ridor, bumps into a friend, and chats with him/her
for a short time. Note that each scenario involves
a time length of at least 15 min (900 s). A 70% user
mobility level means that a user moves 70% of the
time or 630 s at a leisurely walking velocity of
0.5 m/s. He/she is stationary, i.e., standing to chat
with a friend, 30% of the time (270 s). Scenario #5
corresponds to a low 30% mobility case, in which
a user walks to a meeting room to have a discussion
with friends. He/she occasionally moves to a white
board to explain an idea. However, he/she sits and
listens to friends most of the time. For each of six
scenarios shown in Table 2, we run four power-sav-
ing methods repeatedly with different application
error tolerance at 5, 6, 7, 8, 9, and 10 m.
4.2. Impact on mobility levels

The first set of experiments compares the five
energy-saving methods under different mobility
levels, i.e. periodic sampling (PS), adaptive sampling
with constant velocity (ASCV), adaptive sampling
with constant velocity from optimal mobility
prediction (O), sensor-assisted adaptive sampling
with mobility detection (SAASMD), and sensor-
assisted adaptive sampling with foot-step detection
(SAASFD). By adaptive sampling with constant
velocity from optimal mobility detection, we mean
the maximal possible energy saving by measuring
the target’s real velocity from external observation
and then applying the positional error model to com-
pute the most optimal sleep time value. Fig. 7 plots
the O curve, which is used as a baseline, for compar-
ing with our four energy-saving methods. We
observe the following general performance trends.

� Among the four energy-saving methods, PS has
the worst performance, followed by ASCV.
SAASFD has the best performance. It outper-
forms PS in energy saving by a significant margin
of 68.92% at the 10% mobility level and 24.64%
at the 90% mobility level. SAASFD also outper-
forms ASCV by a significant 59% at the 10%
mobility level and 0.93% at the 90% mobility
level. With the help of an accelerometer, the
energy efficiency of the localization system is
improved significantly. Comparing two sensor-
assisted methods, SAASFD, although, outper-
forms SAASMD by 3.69% at the 10% mobility



Fig. 5. Test environment.

Fig. 6. Mobile badge (Taroko with an accelerometer add-on) and
beacon node (Taroko). The rectangle marks the location of
accelerometer sensor board.

Table 2
Test scenarios with different user mobility levels

Scenarios Mobility
levels (%)

Scenario description

1 100 A person jogged repeatedly from one
end of corridor to the other end

2 90 A person walked along a corridor,
entered his/her office, briefly sat down
to check his/her calendar, and then
hurried off to a meeting room

3 70 A person walked along a corridor,
bumped into a friend, and stopped to
chat for a short time

4 50 A person leisurely walked and browsed
through posters displayed on a wall
along a corridor

5 30 A person walked to a meeting room to
have a discussion, occasionally moved
to a white board to explain an idea.
But most of the time, sat and listened
to friends

6 10 A person walked to a seminar room,
sat and listened to a long lecture
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level and 1.4% at the 90% mobility level, the
benefit of a more accurate mobility prediction
method is relatively small.
� In all adaptive methods (ASCV, SAASMD, and

SAASFD), energy consumption rises with an
increasing mobility level. The reason is that to
maintain the same error tolerance, a higher
mobility level requires a higher sampling rate,
resulting in a higher level of power consumption.
� For both sensor-assisted adaptive sampling
methods (SAASMD and SAASFD), the amount
of energy-saving improvement over the periodic
sampling method also rises with a decreasing
mobility level. The reason is that periodic



Fig. 7. Power consumption given different mobility levels under an application-specified error tolerance of 7 m.
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sampling does not exploit many opportunities for
energy saving since the tracked target is station-
ary most of the time at the lower mobility level.

Fig. 8 shows the aggregate energy consumption.
To examine closely the trade-off of using an
additional sensor for adaptive sampling, we sepa-
rate the total energy consumption into three
components: radio, sensor, and processing power
consumptions. As shown in Fig. 8, the additional
sensor consumes a much lower amount of energy
relative to the amount required by the radio. In
other words, the benefit of radio power saving,
i.e., lowering the location sampling rate, consider-
ably outweighs the cost in sensor power consump-
Fig. 8. Each component of power consumption vs. different mobili
tion, i.e., powering the accelerometer, in our
sensor-assisted methods. For the SAASFD method,
we observe that the radio power consumption drops
as the mobility level decreases. The reason is that as
the mobility level decreases, the SAASFD method
can accurately detect a target’s mobility level and
reduce the sampling rate to conserve power.

Fig. 9 shows the measured non-conformance rate
for each energy-saving method under different
mobility levels. Non-conformance rate measures
the probability of positional error exceeding the
application’s error tolerance requirement. Fig. 9
shows that these energy-saving methods can con-
serve power while most of the time meeting the
application’s requirement. In addition, these meth-
ty levels given an application-specified error tolerance of 7 m.



Fig. 9. Non-conformance rate vs. different mobility levels given an application-specified error tolerance of 7 m.
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ods have comparable non-conformance rate. Note
that even the Optimal (O) method still produces
non-conformance due to the unavoidable estima-
tion error from the positioning engine.

4.3. Impact on application error tolerance

The second set of experiments show the tradeoff
relations between energy consumption and error
tolerance for each of the five energy-saving methods
and under different positional error tolerance.
Fig. 10a–c plots five energy consumption curves,
corresponding to the PS, ASCV, O, SAASMD,
and SAASFD methods, with the mobility levels of
70%, 50%, and 30%. The general trends observed
are:

� Similar to the results in the first experiment, PS
has the worst performance, followed by ASCV
and SAASMD, and SAASFD has the best per-
formance. At the 70% mobility level shown in
Fig. 10a, SAASFD outperforms PS by 37.80%
at the 5 m error tolerance and by 29.61% at the
10 m error tolerance. SAASFD also outperforms
the ASCV by 25.07% at the 5 m error tolerance
and by 3.08% at the 10 m error tolerance.
Finally, SAASFD outperforms SAASMD by
6.81% at the 5 m error tolerance and by 5.26%
at the 10 m error tolerance.
� For two sensor-assisted adaptive sampling meth-

ods (SAASMD and SAASFD), its energy-error
tradeoff curves shift closer to the O curve at a
lower mobility level. The reason is that sensor-
assisted adaptive sampling methods can predict
the tracked object’s velocity more accurately at
a low mobility level than the non-sensor-assisted
ASCV method. For example, Fig. 10a–c shows
that at the 5 m error tolerance level, the
SAASFD consumes 18.58% more power than
the Optimal (O) method for the 70% mobility
level. This amount is reduced to 17.88% at the
50% mobility level and further down to 6.06%
at the 30% mobility level. However, ASCV does
not follow this trend.

4.4. Impact of mobility level on non-conformance rate

The third set of experiments show the effect of
mobility prediction on the non-conformance rate
in each of the four energy-saving methods. This is
done by factoring out (subtracting) the location
error contributed from the positioning engine in
our experiments, leaving only the mobility predic-
tion error in the energy-saving methods. Fig. 11
plots four energy non-conformance rate curves, cor-
responding to the ASCV, O, SAASMD, and
SAASFD methods at the error tolerant distance of
7 m. The general trends observed are:

� Although Optimal (O) method uses real instanta-
neous velocity to find a good sampling rate, the
moving target might change its velocity when
its radio interface is turned off. In this case, if
the moving target suddenly accelerates, the sam-
pling rate will be lower than what is necessary to



Fig. 10. (a) Tradeoff between power consumption and error tolerance under different mobility levels (70%). (b) Tradeoff between power
consumption and error tolerance under different mobility levels (50%). (c) Tradeoff between power consumption and error tolerance under
different mobility levels (30%).
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Fig. 11. Non-conformance rate vs. different mobility levels given an application-specified error tolerance of 7 m and real positioning error.
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keep the error within the specified tolerance
range. This results in a non-zero non-confor-
mance rate even the mobility prediction is opti-
mal. However, as shown in Fig. 11, the amount
of non-conformance rate due to sudden changes
in between samples is small.
� Among the three adaptive sampling methods,

ASCV has the worse non-conformance rate,
followed by SAASMD, and SAASFD has the
best non-conformance rate. Because the moving
behavior of the target is different in each sce-
nario, the performance of detecting foot steps
is varying. Therefore, non-conformance rate
does not strictly increase as the mobility level
increases. However, the improvement of non-
conformance rate is quite obvious in each
mobility level. Comparing to ASCV, SAASFD
improves mobility prediction accuracy by
24.60–88.15%. On average, SAASFD outper-
forms ASCV by a significant margin of
56.34% because of more accurate mobility pre-
diction. Among two sensor-assisted methods,
SAASFD improves mobility prediction accu-
racy by 7.10–81.19%. On average, SAASFD
outperforms SAASMD by a significant margin
of 49.81%.
� SAASFD is closest to the Optimal (O) method.

SAASFD degrades mobility prediction accuracy
by 2.60–75.55%. On average, Fig. 11 shows that
the non-conformance rate averagely degrades
by 31.38% using the SAASFD algorithm. This
degradation would be even more serious in other
adaptive sampling methods, ASCV and
SAASMD, which are 28.78–89.94% and 32.16–
85.20% respectively.

5. Related work

Our idea is initially inspired by the notion of
adaptive sensing or adaptive sampling in sensor net-
work research. Energy efficient design is related to
mechanisms at various levels of the wireless network
protocol suite. The range estimation techniques are
related to the localization error estimation. Sam-
pling rate adaptation techniques are related to the
energy-aware localization. Computation reduction
techniques for fingerprinting-based localization are
related to the efficient localization. In the following
subsections, we review and discuss how this work is
relevant or complimentary to the above mentioned
research domains.

5.1. Energy-efficient design

Communication has always been the main energy
consumer in wireless systems; therefore, the energy-
efficient issue has received much attention [6]. This
leads to low-power design within the physical layer
in order to reduce the sources of power consump-
tion within mobile terminals. Adaptive error and
power control are applied to energy efficient proto-
cols within the MAC layer of wireless networks and
power conserving protocols within the LLC layer.
Power-aware protocols within the network layer
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exploit the trade-off between frequent topology
updates (resulting in improved routing) and pre-
cious bandwidth consumed by increased update
messages. Opportunities for saving battery power
within the transport layer lie in sensitivity to wire-
less environment. Selective acknowledgements and
explicit loss notification are used to handle losses.
At application layer, techniques are developed spe-
cifically for different applications. Our work, the
adaptive sampling mechanism, focuses on improv-
ing energy efficiency to support location-aware
applications.

5.2. Range estimation techniques

There are different techniques developed for
range estimations. These techniques commonly
require signal transmissions between the observer
and the target observed. The major differences are
the properties of calibration methods and the usage
of signal sources. Our adaptive sampling mecha-
nism is independent of and complementary to the
range estimation techniques in that the frequency
of range estimations can be optimized for energy-
efficiency.

Most of the techniques use sonic, ultrasonic,
and RF as signal sources. Given the assumption
that signal propagates with constant velocity,
TOA (time of arrival), by measuring the signal
propagation time, is the most common method
for estimating the distance. AOA (angle of arrival)
is a network-based technique exploiting the geo-
metric property of the arriving signal. By measur-
ing the angle of the signal’s arrival at more then
one receiver, AOA is able to give a more precise
location. TDOA (time difference of arrival) [7] is
also network-based. It measures the time difference
instead of the angle to infer distance. Some hybrid
approaches of TOA, AOA, and TDOA are also
proposed, and this is still an active research topic
in the field of localization.

Another class of techniques measures the
received signal strength indication (RSSI). These
techniques exploit the decaying model of elec-
tronic-magnetic field to translate RSSI to the corre-
sponding distance [8,9,11]. Also, the frequency
bands used for transmission vary. For example,
the well-known RADAR system [10] uses the radio
frequency (RF). LADAR and SONAR use the vis-
ible light and the audible sound bands respectively.
LADAR and SONAR, for instances, analyze the
signal reflected from the object to estimate location.
A recent innovation, Cricket [12], takes a hybrid
approach, using both the RF and ultrasonic bands.
5.3. Sampling rate adaptation techniques

Prediction-based energy saving scheme [1] is the
closest to our work. Their system accepts an applica-
tion request for a report of tracked objects’ locations
every T seconds in an object-tracking sensor net-
work. Then, their energy-saving scheme tries to meet
this application request with minimum energy con-
sumption and missed tracking rate. Their energy-
saving scheme adapts location sampling frequency
based on predicted object movement. In addition,
their system also needs to consider energy consump-
tion of sensor network infrastructure which also runs
on battery. Their energy-saving scheme can dynami-
cally turn off sensor nodes that are not in proximity
of any tracked object. There are several differences
between our system and their system. The largest dif-
ference is that their system works only in simulation,
whereas our system works in a real working environ-
ment. Hence, we believe that our performance results
are more realistic. The second difference is that their
system assumes that estimation error from a posi-
tioning system is ignorable or zero. However, in real
environment, no positioning engine is perfect; there-
fore, our prediction heuristics must overcome this
estimation error using accelerometers. Finally, the
application requirement of positional accuracy is
also different; their system adapts a coarse-grained
reporting period whereas our system uses fine-
grained positional error tolerance.

Tilak et al. [2] propose adaptive and predictable
protocols for adapting the sampling frequency
based on mobility patterns of tracked objects. They
have evaluated three protocols: (1) the static fixed
rate (SFR) protocol with a fixed sampling fre-
quency, (2) the dynamic velocity monotonic
(DVM) protocol which adapts the sampling fre-
quency based on a tracked object’s mobility pattern,
and (3) the mobility-aware dead-reckoning driven
(MADRD) protocol which uses a dead-reckoning
localization method on a prediction mobility model.
Their experiment results have shown that MADRD
protocol can provide good energy efficiency with
sufficiently accurate location given that the mobility
of tracked objects follows predictable moving pat-
terns. Our system differs from their work in similar
ways as the prediction-based energy-saving schemes
described previously. Their system works only in
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simulation, whereas our system works in a real
working environment.

5.4. Computation reduction techniques

The Horus system [3] proposes the so-called joint
clustering technique that can significantly reduce the
computational cost of searching for the radio map
in a WiFi fingerprinting-based localization system.
Computation reduction comes from partitioning
location areas into clusters. In each cluster, only a
subset of most access points with most distinguish-
able received signal strength (RSS) signature is
selected as its cluster key.

Chen et al. [4] proposes a similar idea by combin-
ing information theory, clustering, and decision tree
algorithms to reduce the computational cost. Their
system makes further improvement in computation
reduction over Horus by selecting even a smaller
subset of access points and signals. One unique
aspect of their system is that the positioning engine
is moved to the client-side execution, rather than on
the server-side execution. This client-side execution
can reduce communication cost to a server, translat-
ing into better energy savings on a mobile client
device.

Our work differs from these systems by focused
on reducing the number of invocations of location
sampling rather than reducing the amount of work
in each invocation of location sampling (i.e., the
positioning engine).

6. Conclusion and future work

In this paper, we present our design, implementa-
tion and evaluation of a sensor-enhanced, energy-
efficient adaptive localization system based on our
definition of a formal positional error model that
accurately predicts positional error of a real work-
ing positioning engine. Given a specified positional
error tolerance from an application, our localization
system can dynamically adapt the sampling rate of
location information to achieve better energy saving
while conforming to application’s error tolerance.
Furthermore, our energy-saving method utilizes
additional sensors on mobile targets to solve the
estimation error problem in positioning engines.
We improve our sensor-enhanced mobility predic-
tion algorithm which utilizes the sensor as 1-bit state
indicator that tells if the target is stationary or not.
By detecting the target’s foot step to estimate the
target’s velocity, we could further improve the
mobility prediction accuracy by 49.81% on average,
comparing to previous sensor-enhanced mobility
prediction algorithm. We have implemented our
energy saving methods in a working localization
system and conducted performance evaluation in a
real office environment. Our results have shown that
prediction accuracy can be improved by as much as
56.34% on average, comparing to ASCV algorithm.
As the mobility level increases, our sensor-assisted
adaptive sampling method reduces power consump-
tion by as much as 68.92%.

In order to predict a more precise sampling rate,
the algorithm must predict a precise estima-

tion_error. In the current implementation, we use
an average value to approximate the estima-

tion_error in our positioning engine. However, the
variance of estimation_error of fingerprinting-based
positioning engine is quite large. This approxima-
tion would give a poor estimation_error and contrib-
ute to a higher non-conformance rate. To predict
estimation_error more accurately we envision two
future work directions.

The first direction is to lower the variance of esti-

mation_error in our positioning engine. Then, using
an average value to approximate the estima-

tion_error in our positioning engine would give a
closer estimation_error and contribute to a lower
non-conformance rate. We could apply the energy
conserving methods on a more accurate positioning
engine with small variance of estimation_error [19],
this would result in more precise sleep_time as well
and save more energy.

The second direction is to predict estimation
error based on a confidence model [15]. Our future
work will further improve energy efficiency in our
localization system. In the current implementation,
we use an average value to approximate the estima-

tion_error in our positioning engine. However, esti-
mation error is dynamic depending on several
factors in the environment, such as coverage area,
temperature, humidity, human clusters, etc. Based
on a confidence model [15], estimation error can be
modeled and prediction heuristics introduced. This
enables our adaptive sampling localization to deter-
mine a more precise sleep_time for better energy
consumption and improved conformance to the
error tolerance requirement.

Besides, our future work will extend application’s
requirement specification to include not only the
positional error tolerance but also an energy budget

for a mobile target. This can be done by creating
profiles on mappings between positional error and
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energy consumption under different mobility levels.
These profile mappings can be obtained through off-
line or online calibrations. Then, when applications
specify their desirable energy budgets, our system
can provide a positional error bound given a target
mobility level.
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