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Abstract—Speech-based interaction systems are widely used in
mobile devices like smartphones. With advances in deep neural
networks, tasks such as speech emotion recognition (SER) en-
hance these systems’ user-friendliness. However, deploying SER
models on mobile devices is challenging due to their complexity
and computational demands. While pruning can reduce complex-
ity, it often compromises accuracy, and hardware accelerators
like FPGAs are difficult to integrate into mobile devices. This
paper proposes AMSER, a real-time speech emotion recogni-
tion framework using signal compression and task offloading.
AMSER utilizes logarithmic Mel-filter bank coefficients (Fbank)
and singular value decomposition (SVD) for feature extraction
and compression. The compressed signal is only 6.25% of the
original size, achieving 2.24x faster transfer rates and 55.35%
energy savings compared to raw audio transmission. Despite the
compression, the features preserve key audio information for
text and emotion recognition, performed server-side. Experiments
show a WER of 4.68% (Librispeech), 10.69% (CommonVoice),
and 69.83% emotion recognition accuracy (IEMOCAP).

Index Terms—Speech Emotion Recognition, Feature Compres-
sion

I. INTRODUCTION
Speech is a prevalent interaction method in smartphones,

stereos, and other IoT devices. The global speech and voice
recognition market is expected to grow from $12.62 billion in
2023 to $59.62 billion by 2030 [1]. Unlike text, speech carries
richer information such as emotion [2] and gender [3], [4].
Emotion recognition, in particular, enables intelligent systems
to offer more personalized services [5]. For instance, customer
service systems can adjust responses or assess business per-
formance based on customer emotions.

Despite advancements in deep learning improving speech-
related applications [6]–[8], the complexity of models and
large parameter counts impose significant computational and
storage demands. Mobile devices face limitations in processing
power, energy consumption, and heat dissipation, making them
unsuitable for such systems. Additionally, these interactive
applications are highly sensitive to latency [9]–[11], which
mobile devices struggle to meet. As a result, deploying real-
time emotion recognition systems on mobile devices remains a
critical challenge. Researchers have reduced model complexity
on mobile devices using techniques like branch pruning [12],
weight sharing [13], tensor quantization [14], and knowledge
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distillation [15]–[17], but these often reduce accuracy. Hard-
ware solutions like GPUs [18], FPGAs [19], and ASICs [20],
[21] improve computational capacity but are difficult to deploy
on mobile devices due to size and power constraints.

We propose AMSER, a distributed speech emotion recog-
nition framework using signal compression. Mobile devices
handle speech acquisition and preprocessing through Mel-filter
bank [22] coefficients (Fbank) and singular value decomposi-
tion (SVD) [23]. This reduces the processed sample size to
6.25% of the original, significantly lowering storage require-
ments. Deploying real-time speech applications on mobile
devices faces several challenges. First, mobile devices have
limited computing power, making it hard to support complex
neural networks. Second, IoT devices like smart speakers lack
storage for long-term audio data and large models. Lastly,
current emotion recognition models rely solely on dataset
knowledge, limiting their accuracy.

We propose AMSER to address these challenges by cre-
ating a real-time speech emotion recognition framework for
mobile devices and servers. The system offloads deep neural
network tasks to servers, reducing the computational and
storage burden on mobile devices. It also compresses speech
signals using Fbank features and SVD, minimizing storage
needs. Finally, AMSER leverages the pre-trained RoBERTa
model to incorporate external knowledge, enhancing emotion
recognition accuracy.

Extensive experiments demonstrate the feasibility of deploy-
ing a real-time speech emotion recognition system on mobile
devices. The key contributions of this paper are as follows:

• We propose AMSER, a speech emotion recognition sys-
tem for edge mobile devices. Unlike traditional systems
that offload all computations to the server, AMSER re-
duces transmission latency and optimizes resource usage
on edge devices.

• We propose a feature extraction and compression module
for audio signals, optimized for mobile devices. Using
Fbank, the audio is converted into an acoustic spectro-
gram, with SVD applied to compress and filter out high-
frequency redundant information.

• We constructed a neural network for speech emotion
recognition based on the whisper [6] and RoBERTa [7]
models.



• Extensive experiments show that compared to direct raw
audio transfer, AMSER improves transfer rates by 2.24x,
reduces energy consumption by 55.35%, and achieves a
6.25% file compression ratio. On the IEMOCAP dataset,
it achieves 69.83% accuracy and an F1-score of 0.698.

II. RELATED WORK
A. Deep Neural Network Deployment

Deploying DNN models on edge devices is a common
challenge in AI fields like NLP and computer vision. Solutions
such as Vigil [24], Reducto [25], Filter-Forward [26], and
Glimpse [27] implement selective data offloading to minimize
latency based on feature type, filtering thresholds, and content.
Cracking open the DNN [28] enhances video analytics through
joint camera-cloud inference and continuous online learning.
Elf [9] improves mobile deep vision by distributing inference
tasks to multiple servers. Remix [29] optimizes object detec-
tion on edge devices with image partitioning strategies under
latency constraints. AMSER offers a real-time speech emotion
recognition framework via compression and task offloading.

B. Speech Emotion Recognition

Recent research in Speech Emotion Recognition (SER) has
leveraged deep learning techniques. Xu et al. [30] introduced
an attention-based network that aligns textual and audio in-
formation for feature extraction. Yoon [31], [32] developed a
dual RNN encoder model that integrates text and audio signals.
Delbrouck et al. [33] proposed UMNOS, a transformer-based
model for single-sentence emotion recognition and sentiment
analysis.

III. PRELIMINARY STUDY
In speech recognition tasks, methods like MFCC or Fbank

are commonly used to extract two-dimensional features from
audio signals through windowed sampling. For example, Ope-
nAI’s Whisper [6] uses Fbank to extract acoustic spectrograms
from audio, followed by a transformer-based encoder-decoder
model to convert the spectrogram into text labels.

Features extracted through Fbank often contain redundant
information, with high-frequency details offering limited util-
ity in systems like Whisper. Similar to image compression,
where high-frequency details can be removed without losing
key information, we propose using the SVD algorithm to
compress acoustic spectrograms. This preserves low-frequency
features while reducing dimensionality for better identification
and classification.

We verify the efficacy of SVD for compressing audio
features within the Whisper speech recognition framework. In
the Whisper framework, the speech signal s ∈ Rt undergoes
extraction by Fbank to yield the acoustic spectrogram feature
matrix f ∈ Rm×n:

f = FuncFbank(s) (1)

Let k = min(m,n), then we compute the SVD of matrix f :

f = Udiag(S)V H

U ∈ Rm×k, S ∈ Rk, V ∈ Rn×k
(2)

where diag(S) ∈ Rk×k, V H is the conjugate transpose when
V is complex, and the transpose when V is real-valued, and
the matrices U, V are orthogonal in the real case, and unitary
in the complex case. In this scenario, singular values S are
sorted in descending order and are distinct. Denoting them as
σ1 > σ2 > σ3 · · · > σk. Then f can be expressed as the
following decomposition:

f = Udiag(S)V H =

k∑
i=1

σi
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where U = (u1, u2, . . . , uk) and V H =


v1
v2
...
vk

.

Considering that the contribution of these singular values
to the matrix shrinks sequentially, then according to the
Eckhart-Young theorem [34],we can take the compression
approximation of the acoustic spectrogram features:

f ≈ f
′
=

r∑
i=1

σi
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)
(4)

where r ∈ N ∩ [1, k], and r
k ∈ [ 1k , 1] denotes the compression

rate for acoustic spectrogram features. In contrast to the
original method where we needed to store U, S, V to recover f ,
now we only need to save U

′ ∈ Rm×r, S
′ ∈ Rr, V

′ ∈ Rr×n

to recover f
′
, resulting in a saved matrix size equal to r

k of
the original.

Subsequently, we compress the Librispeech [35] and Com-
monVoice [36] datasets at various compression rates and
assess the Whisper system’s performance in recognizing the
compressed acoustic spectrogram features. As a common
metric of the performance of a speech recognition or machine
translation system, word error rate (WER) is employed to
evaluate the performance of whisper on both datasets and can
be caculated by the following formulation:

WER =
S +D + I

S +D + C
(5)

where S is the number of substitutions, D is the number of
deletions, I is the number of insertions and C is the number of
correct words. The results depicted in the Fig. 1 demonstrate
that when the compression rate exceeds 10%, the Whisper
system exhibits commendable speech recognition performance
even for compressed speech.

Although edge devices may lack the computational power
for large-scale models, extracting Fbank features and com-
pressing them for server transmission is feasible. Compared
to direct audio file transmission, sending compressed spectro-
grams reduces bandwidth usage and communication time. Pre-
vious studies show that SVD-based compression at 12.5% for
spectrograms (6.25% for audio files) minimally impacts ASR
performance. AMSER will further verify that this compression
rate maintains accuracy in speech sentiment analysis.



Fig. 1. Impact of Compression Rate for Whisper.
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Fig. 2. The system architecture of AMSER.

IV. SYSTEM

We present AMSER, a real-time speech emotion recognition
system. It consists of two parts: the mobile device acquires
speech and extracts features using an Fbank encoder to output
a Mel Spectrogram, which is then compressed to reduce
storage. The compressed features retain text and emotion
information, and the server performs text and emotion recog-
nition using Whisper and RoBERTa embeddings. The system
architecture is shown in Fig. 2.

A. Signal Preprocess

1) Feature Extraction: The mobile device extracts Fbank
features from the user’s speech through pre-emphasis, frame
splitting, windowing, short-time Fourier transform, and Mel
filtering. Pre-emphasis enhances high-frequency signals, while
frame overlap prevents abrupt changes. A Hamming window
smooths the signal, and FFT converts it to the frequency
domain. Mel filtering then aligns the features with human
auditory perception.

2) Signal Compression: In addition to computing power,
the limitation of storage space is also not negligible for mobile
devices. The system uses SVD described in detail in Sec III
to compress the speech features, de-noising, and retaining the
textual and emotional information in the features as much as
possible.

B. Emotion Recognition

1) Modality Input: The server performs emotion recog-
nition on the compressed features sent from mobile devices
(see Fig. 3). First, the compressed features, derived from the
Mel spectrogram (via STFT), capture signal energy changes
over time, aligning with auditory perception. After SVD
decomposition, the features retain text information, which is
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Fig. 3. The architecture of deep neural network.

converted into text using ASR. Pre-trained RoBERTa [37] is
then applied to enrich the features with external knowledge.

2) Multi-modal fusion: For the features after SVD decom-
position, the system uses Conv-BatchNorm-ReLU structure to
further extract the features in time and frequency dimensions
of the speech signal, and extracts the deeper features in time
dimension by LSTM layer. In addition, the feature extracted
from RoBERTa is a 1024-dimensional vector, which have
good temporal structure and contain rich information. The
system uses a linear layer for dimensionality adjustment for
subsequent multimodal fusion and information compression.

Then the system fuses the compressed audio features and
the RoBERTa coded features, introducing external knowledge
from the outside world into the knowledge within the dataset
with the help of a pre-trained model. The fusion process is
divided into two phases: extracting features from one modality
using the knowledge of the other, and subsequently, merging
these additional extracted features into a single representation.

Specifically, in the first stage the system uses a Co-Attention
module to achieve cross-modal feature extraction (Fig. 4),
and the module employs an encoder-decoder structure stack-
ing multiple layers of attention modules [38]. In this, the
first modality uses Self-Attention to extract deep information
about itself. Subsequently, the second modality performs a
Self-Attention operation, during which a Guided-Attention
is performed to extract more information, considering both
modalities simultaneously. Both Self-Attention and Guided-
Attention are based on the attention mechanism [39]. The
attention module helps to construct a holistic view of the entire
time span of the speech process. The attention consists of a
query q, a key k and a value v:

Attention(q, k, v) = softmax(
qkT√
k
)v (6)

Unlike simply using the self-attentive output of another
modality as the input depth for guided attention, utilising
the final output of the self-attentive layer provides richer
information and more accurate guidance. The features of the
two modalities are fused through the concatenation method,
as both lack a unified temporal structure. The concatenation
method retains more information and facilitates the fusion
of knowledge from the external world with knowledge from
within the dataset.
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Fig. 4. The architecture of co-attention module.

V. EVALUATION

A. Dataset

We use IEMOCAP [40] to evaluate our AMSER system and
train and test our model based on this dataset. IEMOCAP,
a Multimodal Emotion Recognition dataset, comprises 151
recorded dialogue videos. Each segment in it is annotated
for the presence of various common emotions (angry, happy,
neutral, and sad), along with valence, arousal, and dominance.
The recordings span 5 sessions involving 5 pairs of speakers.

B. Experimental Setup

1) Device: Sever. We utilize a server equipped with 188
GB of RAM and a 48.0GB VRAM’s NVIDIA A40 as our
evaluation system for model training and testing. Client.
Redmi Note 12 Pro equipped with 8 GB of RAM and mediatek
dimensity 1080 is used as a system client for audio file
processing and compression.

2) Augmentation: We enhance the audio signals through
three methods: introducing noise based on SNR, applying pitch
shifts, and employing time stretching.

3) Model training: The model was trained for 100 steps
with a batch size of 256. The optimizer used is Adam with a
learning rate of 1e− 5 and a weight decay of 0. Meanwhile,
we employ the Cross-Entropy loss to optimize the model.

4) Evaluation Metrics: We use the following two metrics to
evaluate the effectiveness of our model on the speech emotion
recognition task.

Accuracy. Speech emotion recognition, being a classifica-
tion task, relies on accuracy as its fundamental evaluation
metric. We employ accuracy to evaluate the core classification
performance of the model.

F1 Score. We utilize the F1-score as an additional metric to
ensure a more balanced evaluation of the model’s performance.
The F1-score is of the form: F1 = 2·(precision·recall)

precision+recall
By taking both precision and recall into account, the F1-

score can capture the bias in model predictions, indicating
whether a model achieves high accuracy by correctly predict-
ing the majority classes.

C. Micro Benchmark

1) Model Comparison: The experiments in this section
validate the emotion recognition accuracy comparing different
deep neural networks including UMONS [33], Xu [30] and

Yoon [31], [32]. In addition, in order to verify the effect
of signal compression on speech emotion recognition, the
experiments evaluate the recognition accuracy under different
compression rates. Firstly, compared with other networks, the
proposed deep neural network introduces the knowledge of
the external world, and the emotion performance accuracy
is significantly higher than other networks, with an accuracy
of 0.70126. Moreover, with the increase of compression rate,
the emotion recognition accuracy only weakly decreases from
0.70126 to 0.69833, which is still significantly higher than
that of other networks (Tab. I). The system measures the
accuracy and recall of the model using F1-score as shown in
Tab. II, demonstrating that the proposed deep neural network
outperforms existing emotion recognition methods.

Compress Rate Ours UMONS Xu Yoon
12.50% 0.69833 0.67840 0.63343 0.55523
18.75% 0.69540 0.67644 0.63636 0.55914
25.00% 0.69735 0.67644 0.63742 0.56207
50.00% 0.69840 0.67742 0.63832 0.56891
100.00% 0.70126 0.67644 0.64321 0.58260

TABLE I
ACCURACY COMPARISON OF DIFFERENT MODELS

Compress Rate Ours UMONS Xu Yoon
12.50% 0.69786 0.67713 0.62987 0.54849
18.75% 0.69486 0.67539 0.63329 0.55306
25.00% 0.69696 0.67560 0.63298 0.55639
50.00% 0.69688 0.67654 0.63487 0.56381
100.00% 0.70089 0.67540 0.63968 0.57749

TABLE II
F1 SCORE COMPARISON OF DIFFERENT MODELS

Model Raw AMSER
transmission time 406.58s 180.75s

transmission energy overhead 0.0056kWh 0.0025 kWh

TABLE III
TRANSMISSION TIME AND ENERGY CONSUMPTION

2) Energy: In this section, the experiment verifies the effect
of signal compression on power consumption. We utilize the
compression rate of 6.25% for the 22,366 files transferred.
Compared to translate the raw audio files, AMSER achieves a
2.24 times improvement in transfer rates and reduces energy
overhead by 55.35%.

VI. CONCLUSION
We propose AMSER, a real-time speech emotion recognition

framework for mobile devices. The system offloads deep neu-
ral network computations to a server, reducing mobile device
load. Speech signals are compressed using Fbank features and
SVD, minimizing storage requirements. By leveraging a pre-
trained RoBERTa model, the system enhances emotion recog-
nition accuracy. Extensive experiments validate its feasibility
for mobile speech emotion recognition.
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