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Abstract—Hand pose estimation is a key support for a variety
of interactive applications including user interface control, sign
language understanding, virtual reality modeling, etc. Existing
approaches mainly exploit wearable devices such as gloves or
bracelets to estimate hand poses, which may introduce high
deploying costs and intrusive user experience. Others rely on
vision technologies whereas they could face complicated illumina-
tions and privacy leakage. In this paper, we present a millimeter
wave (mmWave) signal-based 3D hand pose estimation system,
mmHand, which utilizes a mmWave radar to generate 3D hand
skeletons and reconstruct 3D hand meshes. mmHand first lever-
ages mmWave signals to sense a hand and pre-process the signals.
Then, mmHand extracts spatial and temporal features using a
designed attention-based hourglass network (mmSpaceNet) and
Long Short-Term Memory (LSTM), respectively. Based on the
extracted features, mmHand further regresses hand joints in 3D
space to generate 3D hand skeletons. Finally, 3D hand meshes
that continuously describe hand poses with detailed surfaces are
reconstructed through a hand Model with Articulated and Non-
rigid defOrmations (MANO). Extensive experiments demonstrate
that mmHand can accurately generate 3D hand skeletons with
18.3mm mean per joint position error and 95.1% of correct key
points, which indicates the effectiveness of mmHand on hand pose
estimation.

Index Terms—Millimeter wave sensing, hand pose estimation,
hand joint regression, hand mesh reconstruction

I. INTRODUCTION

As an important expression carrier, human hands can ex-

press human’s rich personal needs, intentions and operations

through various gestures. Hence, hand-based interaction is one

of the most natural and pervasive ways to connect humans

and machines together. Hand pose estimation is a kind of

technique that estimates and models hand poses under various

hand gestures and motions continuously, which provides the

fundamental knowledge for machines to acquire interactive

content. Together with the explosive growth of Internet of

Things (IoT) applications, hand pose estimation has become a

critical support in a lot of interaction scenarios including user

interface controls, sign language understanding, virtual reality

(VR), augmented reality (AR), interactive games, etc.

To meet the widespread need for interaction scenarios,

academic researchers and industrial practitioners have pro-
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Fig. 1: Illustration of mmHand, which utilizes a mmWave radar to realize 3D
hand pose estimation.

posed some hand pose estimation approaches. Among them,

wearable-based solutions are extensive technologies that cor-

ner the market. Wearable devices such as data gloves [1] and

bracelets [2] can capture highly accurate hand shapes and

motions with sensitive hand-attached sensors, which act as

professional hand pose estimation solutions in specialized ap-

plication scenarios such as surgical operations. However, wear-

able devices are usually dedicated tools and bring about high

deployment costs. In addition, active wearing devices may

induce intrusive user experience and limit usage scenarios.

Different from wearable-based approaches, leveraging images

or videos to estimate hand poses also attracts a lot of attention

due to the advancement of computer vision technologies.

Vision-based approaches usually rely on large-scale vision

datasets and deep neural networks to generate hand skeletons

or synthesize hand meshes [3, 4, 5, 6, 7]. However, they

strictly depend on illumination conditions of the environment

and suffer from none line-of-sight scenarios. Besides, vision-

based approaches may expose individual privacy hidden in the

background. Therefore, a low-cost, passive, and nonintrusive

solution is highly desired in hand pose estimation market.

Recently, radio frequency (RF) signals have been exploited

for sensing besides communications, among which the mil-

limeter wave (mmWave) signal is one of the most popu-
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lar. mmWave stands out because of its fine-grained sens-

ing capability from short wavelength and large bandwidth,

which have yielded many sensing applications ranging from

automotive-based object detection [8], ego-motion estima-

tion [9], to human-centric activity recognition [10], indoor

localization [11], vital sign monitoring [12], etc. Although

mmWave signals have been successfully exploited in gesture

recognition [13, 14, 15], most of them can only output

predefined categories of gestures but cannot express dynamic

3D hand poses. A recent study [16] exploits mmWave signals

to sense human forearm and therefore infer finger motions, but

it ignores the shape of hand palms and cannot render realistic

hand meshes. Besides, the forearm is required to always face

the radar to track finger motions, which significantly limits

the performance when users rotate arms. Moreover, since

mmWave signals do not directly capture depth information

of the hand, the depth information of the hand is inferred

and the method generates pseudo-3D hand skeletons. The

sensing capability of mmWave signals and high demand for

3D hand pose estimation motivate us to leverage mmWave

signals to build a nonintrusive and realistic 3D hand pose

estimation system. The system is robust to various lighting

conditions and works in a privacy-preserving and nonintrusive

manner, which can be easily deployed in real-world scenarios

to enable a broad array of interactive applications, such as

user interface control, VR modeling, etc. To achieve 3D hand

pose estimation based on mmWave signals, we face several

challenges in practice. First, since the motion of a hand is

usually sophisticated and flexible, we need to robustly capture

the subtle motion of hands leveraging a commercial off-the-

shelf (COTS) mmWave radar. Second, due to the limited

resolution and error-prone nature of mmWave signals, we

need to effectively extract the multi-scale features of human

hand from mmWave signals. Third, to enable practical hand

estimation applications, the system should generate dynamic

3D hand skeletons and reconstruct realistic 3D hand meshes.

In this paper, we propose a nonintrusive 3D hand pose

estimation system, mmHand, which generates 3D hand skele-
tons and reconstructs hand meshes continuously leveraging a

COTS mmWave radar. mmHand leverages mmWave signals

to sense a user’s hand and pre-process the signals. Then,

mmHand extracts spatial features of the hand using a designed
attention-based hourglass network, mmSpaceNet, and further
extracts temporal features of the hand using Long Short-

Term Memory (LSTM). Based on the extracted features,

mmHand regresses hand joints in 3D space to generate 3D

hand skeletons with the combination of 3D loss and kinetics

loss. Finally, mmHand reconstructs 3D hand meshes that

continuously describe hand poses with more detailed surfaces

through a model named hand Model with Articulated and Non-

rigid defOrmations(MANO). We evaluate the performance of

mmHand by conducting extensive experiments in real-world
scenarios. The results show that mmHand can effectively

estimate different hand poses. An illustration of the mmHand
system is shown in Fig. 1.

We highlight our main contributions as follows:

Fig. 2: Architecture of mmHand.

• We propose a nonintrusive 3D hand pose estimation

system, mmHand, which leverages mmWave signals to
generate 3D hand skeletons and reconstruct 3D hand

meshes that continuously describe hand poses.

• We design a deep learning model to effectively extract
multi-scale spatial and temporal features of human hands

from mmWave signals for hand pose estimation.

• We regress 21 hand joints in 3D space to generate

dynamic hand skeletons, and further reconstruct realistic

and continuous 3D hand meshes.

• We conduct extensive experiments involving 10 partic-
ipants in real-world scenarios. The results show that

mmHand effectively reconstructs 3D hand meshes, and

achieves 18.3mm mean per joint position error and 95.1%
of correct keypoints in 3D space on hand joint estimation.

II. SYSTEM OVERVIEW

To realize hand pose estimation in complex and real-world

scenarios, we build mmHand, which leverages a commercial
mmWave radar to continuously sense the motion and shape

of hands for 3D hand pose estimation. Fig. 2 shows the

architecture of mmHand, which consists of following modules.
mmWave Signal Pre-processing. In this module, mmHand

leverages mmWave signals to sense a user’s hand and pre-

process the signals. The mmWave radar first receives the

signals reflected by the hand. Then, mmHand initially derives
distance, velocity, and angle information through a series

of FFT operations. The pre-processing of mmWave signals

provides crucial insight into the posture and motion of the

hand, which is the basis of hand pose estimation subsequently.

Hand Joint Regression. In this module, mmHand generates
3D hand skeletons from the pre-processed mmWave signals

based on a designed deep learning model. Specifically, mm-
Hand first extracts multi-scale spatial features that describe the
posture of the hand using a designed attention-based hourglass

network called mmSpaceNet. Then, mmHand extracts temporal
features that describe the motion of the hand using a Long

Short-Term Memory(LSTM)-based temporal model. Finally,

mmHand regresses hand joints in 3D space and generates

3D hand skeletons based on the extracted features with the

combination of 3D loss and kinetics loss.

Hand Mesh Reconstruction. In this module, mmHand fur-
ther reconstructs 3D hand meshes using a universal parametric

hand model MANO (hand Model with Articulated and Non-

rigid defOrmations). By fitting the pose and shape parameters

of MANO based on the regressed 3D hand joints, mmHand
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Fig. 3: Illustration of sensing human hand and other objects using mmWave
signals.

generates realistic 3D meshes of the hand, which realizes

dynamic hand pose estimation leveraging mmWave signals.

III. SIGNAL PRE-PROCESSING

To sense the posture and motion of a hand, mmHand first
uses frequency-modulated continuous wave (FMCW) tech-

niques on mmWave signals to measure the range, velocity,

and angle of the sensing target. Specifically, a commercial-

off-the-shelf (COTS) mmWave radar transmits chirp signals

with linearly increasing frequencies at transmit antennas. Upon

reflection from objects in the environment, the signals are

captured by the receive antennas of the radar. The transmitted

and received signals are then mixed in the mixer of the

radar and yield intermediate frequency (IF) signals, which is

expressed as

xIF (t) = Ar · ej2π[f0+ B
Tc

t− B
2Tc

τ(r,c)], (1)

where f0 is the start frequency of a chirp, B is the signal

bandwidth, Tc is the chirp duration, Ar is the amplitude

coefficient representing the attenuation of mmWave signals,

and τ(r, c) is the delay of the received signals relative to the
transmitted signals, which is determined by the propagation

speed c of mmWave signals and the distance r between the
object and radar.

After obtaining the IF signals, mmHand performs a series of
pre-processing steps to calculate range, velocity and angle of a

hand, respectively. The range r between objects and the radar
can be denoted as r = cfTc

2B , where f is the frequency of IF
signals. However, mmWave signals may contain environmental

noises, which could affect accurate sensing of human hand.

Thus, we first need to eliminate environmental interference

from the received mmWave signals. Since the range r is
directly proportional to the frequency f , there are different
frequencies on IF signals corresponding to the hand and

other objects in the environment, such as the human body,

furniture, etc. As shown in Fig. 3, due to different distances

from the radar, the hand, the human body, and the furniture

correspond to different peaks in the spectrum, and the hand

is always located in the first dominant peaks because hand is

usually closest to the radar in gesture interactions. To remove

environmental interferences, mmHand filters the raw mmWave
signals through an 8-order bandpass Butterworth filter and

preserves signals related to the hand. Finally, by performing

range-FFT on the mmWave signals, Range-Spectrums that
describe the object in range dimension are obtained.

To calculate the velocity v of an object, the FMCW radar

transmits two chirps with an interval of Tc. After performing

Fig. 4: The 21-hand-joint model used in mmHand.

range-FFT, the two signals peak at the same position in

Range-Spectrums but they have a phase difference Δφ which
corresponds to the movement of the object in vTc. Thus,
the velocity v can be calculated by v = λΔφ

4πTc
, where λ

is the wavelength of signals. After performing Doppler-FFT,

Doppler-Spectrums are obtained.
To estimate the angle of arrival (AOA), at least two receive

antennas are required. The distance difference Δd between an
object and the two receive antennas causes a phase difference

Δφ at the peak of range-FFT, which can be denoted as

Δφ = 2πΔd
λ . According to geometric relationship, Δd is

denoted as Δd = lsin(θ), where l is the distance between two
receive antennas, and θ is the AOA. Hence, θ can be denoted as
θ = sin−1(λΔφ

2πl ). To locate the object in space, mmHand uses
TDM-MIMO technologies to calculate two kinds of AOA, i.e.,

azimuth and elevation. The four receive antennas are always

activated, while the three transmit antennas are activated

alternately in sequence, generating virtual antenna arrays to

measure azimuth and elevation simultaneously. Then, mm-
Hand performs angle-FFT on the signals to obtain Azimuth-
Spectrums and Elevation-Spectrums. However, the frequency
resolution of the angular spectrum obtained by the traditional

fast Fourier transform is insufficient. Since the hand only

appears within a range of ±30 ° relative to the azimuth and

elevation angles of the radar, mmHand uses zoom-FFT with
a refinement factor of 2 in angle-FFT, which improves the

accuracy of angle estimation. Finally, Azimuth-Spectrums and
Elevation-Spectrums are obtained.
After signal pre-processing, mmHand constructs a

four-dimensional matrix containing all spectrums, i.e.

Range-Spectrums, Doppler-Spectrums, Azimuth-Spectrum and

Elevation-Spectrums, which is called Radar Cube. The Radar
Cube contains the range, angle and velocity information of
the sensed hand.

IV. HAND JOINT REGRESSION

To represent a human hand, we employ a widely-used 21-

hand-joint model, which comprises a wrist joint, 16 finger

joints, and 4 fingertip joints, as illustrated in Fig. 4. For hand

pose estimation based on mmWave signals, we propose a deep

neural network in mmHand that regresses the position of the
21 hand joints in 3D space to generate 3D hand skeletons.

The input of the designed deep learning model is the Radar
Cube (RC), which is generated through the pre-processed
signals. RC is a four-dimensional matrix denoted by RC ∈
R

F×V×D×A, where F is the number of frames, V is the

number of velocity bins, D is the number of distance bins,

and A is the number of angle bins. Theoretically, inputting

each frame of RC into the neural network can generate 3D
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Fig. 5: The architecture of 3D hand joint regression in mmHand.

hand skeletons corresponding to the frame at that moment.

However, the features extracted from a single frame cannot

cover all the features of a hand at a certain instant, leading

to an inaccurate hand joint regression. Thus, we use several

consecutive frames to form a segment of Radar Cube, i.e. X
∈ Rst×V×D×A, where st is the number of consecutive frames
contained in each segment, and X is used as a single input to
the network. The radar cube provides more details about hand

motions at a certain instant and enhances the robustness of the

input.

To achieve hand pose estimation using mmWave signals,

it is necessary for mmHand to sense the spatial distribution
of hands in 3D space and describe hand motion in time

dimension. Hence, mmHand first extracts spatial and temporal
features of a hand from mmWave signals, and further regresses

21 hand joints in 3D space to generate 3D hand skeletons.

Fig. 5 shows the architecture of hand joint regression in

mmHand.

A. Hand Feature Extraction

Extracting Spatial Features based on mmSpaceNet. Since
a human hand has a relatively small reflection area and the

postures of a hand are diversified, the reflected mmWave

signals have a low reflection intensity and remain similar be-

tween different postures. To effectively extract spatial features

of a hand, we design an attention-based hourglass network,

mmSpaceNet, which combines shallow features with deep fea-
tures to characterize a human hand from different granularities

in space. As Fig. 5 shows, mmSpaceNet is composed of
attention residual blocks and each block has two branches.

One branch adjusts the number of channels without changing

the size of the feature map using 1× 1 convolutional layer to
preserve the features of the current level. The other branch first

uses convolutional layers for downsampling to extract high-

dimensional and fine-grained features, and then uses deconvo-

lutional layers for upsampling to obtain high-resolution feature

maps. We adopt a two-stage channel attention mechanism as

well as a spatial attention mechanism in all residual blocks,

which enhances mmSpaceNet’s ability to extract key features.
Two-Stage Channel Attention. In order to enhance the

feature extraction capability of each residual block, we propose

a two-stage channel attention mechanism that combines tradi-

tional channel attention mechanisms[17, 18] with the char-

acteristics of mmWave signals. Fig. 6 shows a diagrammatic

sketch of the two-stage attention mechanism.

Fig. 6: Two-Stage channel attention mechanism.

Each segment of Radar Cube X can be considered

as a combination of st three-dimensional matrices, where
X = [X1, X2, ..., Xst] ∈ R

st×V×D×A. For each Xi ∈
R

V×D×A, i = 1, 2, ...st, the first channel attention mechanism
is applied, which is represented by

ai = σ(Conv1(TGAP(Xi) + TGMP(Xi)), (2)

Yi = aiXi, (3)

where ai represents the weight of the i-th frame channel, σ is
the sigmoid function, Conv1 represents a block with two con-

volutional layers, TGAP means the Three-dimensional Global
Average Pooling, and TGMP means the Three-dimensional

Global Max Pooling. Then, Xi is multiplied by the corre-

sponding weight ai and the output Yi of each frame channel is
obtained. After the first stage, the original input X is converted
to Y = [Y1, Y2, ..., Yst] ∈ Rst×V×D×A which is weighted on

frame channel.

Then, we apply the second stage attention mechanism. A

Global Max Pooling (GMP) and a Global Average Pooling
(GAP) are performed on each velocity channel. The results
of the two poolings on each channel are concatenated as

channel features to preserve more information. After that, a

fully connected layer FC is used to encode all channel features
into a weight vector, which is multiplied with the original input

Y. This process can be expressed as

bi = σ(FC([GAP(Yi),GMP(Yi)]), (4)

Zi = biYi. (5)

After that, the input Y is converted to Z = [Z1, Z2, ..., Zst] ∈
R

st×V×D×A which is weighted on velocity channel.

3D Spatial Attention. The mmWave Radar equally receives
and processes the reflected signals from all distances and

directions. However, in hand pose estimation, all positions are

not equally important. We focus more on finger joints and

fingertips, which correspond to certain areas on the Range-
angle Spectrums. In order to enable the network to learn
the difference in Range-angle Spectrums, we utilize a spatial
attention mechanism on the output Z after performing the two-
stage channel attention mechanism, which can be expressed as

Ci = σ(Conv2([MEAN(Zi),MAX(Zi)])), (6)

Wi = CiZi, (7)

where MEAN represents the mean of all feature maps of the

form D×A computed along the velocity dimension, MAX
represents the maximum value computed along the velocity

dimension across all feature maps, and Conv2 is convolu-

tional layer used for adjusting the number of channels. After

performing the spatial attention mechanism, the input Z is
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Fig. 7: Two geometric relationships of finger joints.

converted to W = [W1,W2, ...,Wst] ∈ R
st×V×D×A. Com-

pared to the initial input X,W distinguishes the importance of

different frame channels and velocity channels, while focusing

on the key areas in Range-angle Spectrums.
With the above processing, a feature map that contains mul-

tiscale spatial features of the hand is obtained from mmWave

signals. The feature map is used as the input of the temporal

module for further extracting temporal features.

Extracting Temporal Features based on LSTM. To
achieve dynamic hand pose estimation, we further design a

temporal model to extract temporal features, as shown in

Fig. 5. The frames of mmWave are highly correlated between

adjacent frames. To reconstruct continuous motion of a hand,

we introduce LSTM into the temporal model for extracting

temporal features.

Specifically, each segment of Radar Cube X is processed
in mmSpaceNet to generate a global feature map. In addition,
the global feature map is flattened at the temporal model.

Then, every single input of the network generates a feature

vector. All feature vectors form a vector sequence as an input

to LSTM for extracting temporal features.

B. Regressing 3D Hand Joints based on a Combined Loss

After extracting spatial and temporal features, mmHand
further regresses 21 hand joints in 3D space through a com-

bined loss to generate 3D hand skeletons. The combined loss

function Ltotal is expressed as

Ltotal = β × L3D + γ × Lkine, (8)

where β, γ is the weight corresponding to each loss.

L3D is the 3D hand joint loss, which is represented by

L3D =
∑20

i=0 ||hpredi − hgti ||2, where hgti = (xi, yi, zi), i =

0, 1, . . . . . . , 20, is the ground truth, and hpredi is the result of

i-th joint predicted by the proposed network.
Lkine is the hand kinematic loss inspired by [19], which

divides finger bending into four situations and imposes con-

straints on each. We simplify the relationship between finger

joints to two geometric categories, i.e., collinear and coplanar,

and constrain them separately. Generally, a hand is an object

with segmented rigidity characteristics. Each phalange is a

rigid body, and phalanges are articulated with each other

through joints, allowing the hand to perform various motions.

We use A, B, C, and D to represent three phalanges and one

fingertip, where A is the finger root. Each joint has its 3D

coordinates. When the finger is straightened, the four joints

are collinear. When the finger is bent, the four joints are non-

collinear, but they are still coplanar. Fig. 7 shows two types

of situations. Lkine can be denoted as Lkine = λLcop + (1−
λ)Lcol. λ is equal to 1 in collinear cases while 0 in coplanar
cases. Lcol represents the collinear loss and Lcop represents

the coplanar loss. For collinear cases, the length between the

phalanges satisfies ||B − A|| + ||C − B|| + ||D − C|| <
(φ+1)||D−A||, where φ is set to 0.01. Meanwhile, the angle
between the vector corresponding to each phalange and the

direction vector e of the finger should be small enough, which
means t < cos(

→
AB, ed) < 1. t is a number close enough to 1,

which is set to 0.99 in mmHand. This also holds for
→
BC and→

CD. Therefore, the loss of collinear cases is expressed as

Lcol = max(||AB||+ ||BC||+ ||CD|| − 1.01||AD||, 0)

+ max{p−
→
AB · ed
||

→
AB||

, 0}+max{p−
→
BC · ed
||

→
BC||

, 0}

+max{p−
→
CD · ed
||

→
CD||

, 0}.

(9)

For coplanar cases, the direction vector of each phalange is

orthogonal to the plane normal vector en. Hence, the loss of
coplanar cases can be expressed as Lcop =

→
AB · en +

→
BC ·

en +
→
CD · en.

Under the supervision of the combined loss, mmHand
obtains the 3D position of 21 hand joints using fully-connected

layers, which realizes 3D hand skeleton generation.

V. MESH RECONSTRUCTION

With the 3D hand skeletons of 21 joints, we further generate

realistic 3D hand meshes. 3D hand meshes present a hand

with more geometric details and finer expressiveness, which

can realistically exhibit the posture and motion of the hand.

Hand Model. With the development of 3D scanning tech-

nology, parametric hand models have emerged to attain more

authenticity and accuracy in hand pose estimation [20]. Para-

metric hand models are based on the anatomical structure

and kinematics principles of a human hand, modeling the

hand as a 3D model controlled by parameters. By controlling

the motion of joints and the shape of the hand through

parameters, the model can fit any possible hand shapes and

postures. In mmHand, we use a model named hand Model
with Articulated and Non-rigid defOrmations (MANO) [21]

to reconstruct 3D hand meshes. MANO is developed based

on a model for human body called Skinned Multi-Person

Linear Model(SMPL) [22]. MANO considers the complexity

and flexibility of hands, and uses a mathematical model to

describe finger poses and motions. Specifically, a differentiable

function M(β,θ) uses a set of parameters β ∈ R10 to control

the shape, and a set of parameters θ ∈ R21×3 to control the

pose of the generated hand. β is the coefficients of a shape

principal component analysis base learned from hand scans,

and θ is joint rotations in axis-angle representation, which can
be expressed as

M(β,θ) = W (Tp(β,θ), J(β),θ,W), (10)
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Fig. 8: Hand mesh reconstruction.

where W (·) is a linear blend skinning function [23], Tp is a
deformed template hand mesh, J(β) is the location of hand
joints, and W is the skinning weights. The deformed template

Tp is obtained by applying parameters to a standard template,
which can be denoted as

Tp(β,θ) =
→
T +Bs(β) +Bp(θ), (11)

where
→
T is a standard template that represents a preset pose(T-

pose) of the model, Bs(β) and Bp(θ) are shape and pose blend
shapes, respectively.

Mesh Reconstruction. To reconstruct 3D hand meshes

based on MANO, we first determine the pose parameters θ
and the shape parameters β, respectively. Then, the standard

template
→
T is deformed using these parameters according to

Eq.(11) to generate final 3D hand meshes. Fig. 8 shows the

process of reconstructing 3D meshes using 21 hand joints J3D.

The spatial distribution of hand skeleton joints represents the

overall size and inner geometry of hand shapes. Hence, there

is a mapping relation between the reconstructed skeletons and

hand shapes. mmHand utilizes the reconstructed skeletons as
the input, and adopts three fully-connected layers with layer

normalization to output shape parameters β for virtualizing

the hand shape. Then, we infer the joints’ rotation parameters

θ. Inferring the rotation of all hand joints θ based on the 3D
skeleton is an inverse kinematics problem [24]. To solve such a

problem end-to-end,mmHand uses a deep learning algorithm
to learn the correspondence between the coordinates of hand

joints and joint rotations. Specifically, mmHand employs fully-
connected layers with layer normalization to infer the pose

parameters θ. mmHand calculates the direction vector of

the phalanges Dp ∈ R
20×3 from the 3D coordinates of

21 hand joints J3D. Then, Dp and J3D are flattened into

a vector and concatenated as inputs to the neural network.

Explicitly providing the direction of the phalanges is helpful

for the network to predict joint rotations more accurately. To

achieve higher computational efficiency, the network outputs

the rotation quaternions Q ∈ R
21×4 for all joints. Then,

Q ∈ R
21×4 is converted into the corresponding axis-angle

representation θ.

The hand template
→
T takes the pose parameters θ and the

shape parameters β as input. With the deformed template,

mmHand generates a 3D hand mesh from the 3D hand joints

to express the pose of human hand realistically.

VI. EVALUATION

In this section, we conduct experiments to evaluate mmHand
in real environments.

CameraIWR1443

Fig. 9: Experimental setup.

A. Evaluation Setup

mmHand is implemented using a commercial off-the-

shelf (COTS) mmWave radar (Texas Instruments (TI)

IWR1443 [25]) connected with a data capture card (TI

DCA1000EVM [26]). The mmWave radar utilizes 3 transmit

antennas and 4 receive antennas to form a virtual antenna array

based on TDM-MIMO technology. It transmits chirp signals

with the frequency range from 77GHz to 81GHz. The cycle

time of a chirp is set to 80us. We sample 64 times on each
chirp. In each frame, the 3 transmit antennas send chirps in

turn and cycle 64 times. TI mmWave Studio is installed on

a desktop computer equipped with an Intel Core i5-10440F

processor to interact with the mmWave radar. The designed

deep learning model is trained using an NVIDIA RTX 3090

Ti graphics card. The ground truth is captured by a depth

camera. We use MediaPipe Hands [27] to generate 21 hand

joints from images as the ground truth.

Fig. 9 shows the experimental setup where the mmWave

radar and the camera are placed in the same position. They

are simultaneously activated to collect mmWave signals and

images respectively. We recruited a total of 10 volunteers to

participate in the evaluation, including 5 male volunteers and

5 female volunteers aged between 20 and 50 years old. The

volunteers came in a variety of heights ranging from 1.65m to

1.85m and different body types including lean, moderate, and

slightly overweight. When collecting data, the volunteers stood

in front of the radar and kept their hands within a range of

20cm to 40cm toward the radar. The volunteers performed

continuous hand gestures, i.e., the interaction gestures and

counting gestures, which are non-predefined and most com-

mon daily gestures. The mmWave radar and camera continu-

ously collected the mmWave data and labels (i.e., coordinates

of 21 hand joints). We collected a total of 150,000 valid frames

of mmWave data and corresponding ground truth labels from

each volunteer. The experiment was conducted in 3 different

experimental environments, including classrooms, corridors,

and playgrounds. In addition, to evaluate the robustness of

the model and its performance in some special situations, we

also collected a small amount of data on volunteers wearing

different gloves and holding objects in their hands for testing.

We apply 5-fold cross-validations in the training and testing

process. Specifically, the data of 10 volunteers is divided into

5 sub-datasets. Each sub-dataset contains 2 volunteers’ data.

In the k-th round of cross validations, the k-th sub-dataset is

retained as the testing set, and the other 4 sub-datasets are used

as the training set for model training. The cross-validations

are designed to evaluate the performance taking into account
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Fig. 10: Examples of hand meshes and hand skeletons for different gestures.

Fig. 11: Examples of hand mesh reconstruction for continuous gestures.

the difference between users and gestures. In model training,

the initial learning rate is set to 0.001 and follows the cosine

learning rate decay method. The batch size for training is 16,

and the model is trained for a total of 500 epochs.

We use the following evaluation metrics:

• Mean Per Joint Position Error (MPJPE) is the mean per
joint position error measured by Euclidean distance (mm)
between the predicted hand joints and the ground truth,

which can be denoted as

MPJPE =
1

N

N∑

i=1

||Jp
i − J t

i ||, (12)

where N is the number of hand joints, Jp
i is predicted

hand joints and J t
i is the ground truth.

• The Percentage of Correct Keypoints in 3D Space (3D-
PCK) is the percentage of correctly predicted hand joints
under different thresholds, which can be denoted as

PCKk =

∑
i δ(

di
d < Tk)∑
i 1

, (13)

where Tk is a manually set threshold, di is the Euclidean
distance between the predicted value and the ground truth

of the i-th joint, d is the scale normalization factor, and
δ is an indicate function.

• The Area Under the Curve (AUC) is the area under the
3D-PCK curve.

B. Overall Performance

We first evaluate the overall performance of mmHand in 3D
hand skeleton generation and 3D hand mesh reconstruction.

Fig. 10 shows examples of hand skeletons and hand meshes

of different gestures respectively. It can be seen that the 21
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Fig. 15: CDF of MPJPE.

hand joints accurately depict the corresponding poses of the

hand. Moreover, the 3D hand meshes present realistic 3D

animations that are consistent with the user’s hand poses.

mmHand can also capture and reconstruct continuous hand

poses. Fig. 11 shows examples of hand mesh reconstruction for

two continuous gestures. The hand meshes effectively exhibit

the gradual change of hand poses for continuous hand gestures.

We further quantitatively evaluate mmHand by measuring
MPJPE, 3D-PCK, and AUC of the 21 hand joints. Fig. 12

and Fig. 13 show the MPJPE and the 3D-PCK for each user

respectively, where the threshold of 3D-PCK is 40mm. In
general, mmHand achieves an average of 18.3mm MPJPE and

95.1% 3D-PCK with average standard deviations of 2.96mm
and 1.17%, respectively. The results indicate that mmHand
can accurately regress 21 hand joints with low mean errors.

Furthermore, it can be seen from Fig. 12 and Fig. 13 that

the differences in MPJPE and 3D-PCK between each user

are insignificant. For instance, the differences of MPJPE

and 3D-PCK between user 2 (with the lowest MPJPE and

highest 3D-PCK) and user 6 (with the highest MPJPE and

lowest 3D-PCK) are only 2.9mm and 3.3% respectively. This

demonstrates the effectiveness and robustness in hand joint

regression of mmHand for different individuals.
To accurately evaluate mmHand’s performance on regress-

ing different hand joints, we divide 21 hand joints into the

palm joints and the finger joints, and then evaluate the average

3D-PCK and AUC for all users. Fig. 14 shows the 3D-

PCK of mmHand’s hand joint regression with the thresholds
ranging from 0mm to 60mm. It can be observed that the 3D-
PCK rapidly increases as the threshold increases. The overall

3D-PCK reaches 95.1% when the threshold is 40mm. We
also calculate the AUC of 3D-PCK curve, where a larger

AUC indicates a better performance. The results show that

mmHand has an overall AUC of 0.707, which achieves good
performance on hand joint regression. Fig. 15 shows the

cumulative distribution function (CDF) of MPJPE for all the

hand joints. It can be seen that 90.2% of the MPJPE of the

predicted hand joints are within 30mm. Besides, we can also
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observe from the results that there is a bit of difference in the

performance of hand joint regression for different parts of the

hand. The reason is that the palm lacks flexible deformation

in gestures, resulting in relatively stable hand joints. On the

contrary, fingers are usually flexible and interact with each

other to form various gestures, making it more difficult to

regress finger joints.

C. Comparison with Existing Methods

We compare the performance of mmHand with several exist-
ing methods including vision-based and wireless signal-based

solutions. The vision-based methods include Cascade [28],

CrossingNet [29], DeepPrior++ [30] and HBE [31], which are

implemented to calculate the MPJPE on two public 3D hand

pose datasets (MSRA DataSet [28] and ICVL DataSet [32]).

Since it is difficult to build a one-to-one mmWave dataset

relative to MSRA and ICVL for a fair comparison, we

utilize our self-collected mmWave dataset and present the

comparison with existing vision methods. The two wireless

signal-based methods are mm4Arm [16] and HandFi [33], in

which mm4Arm utilizes mmWave signals and HandFi utilizes

WiFi signals. Although the two wireless signal-based methods

lack sources to completely reproduce for comparison, we

still refer to the experimental setup of the two methods and

collect mmWave data following their experimental setups for

a relatively fair comparison. That is, in the lab environment,

the users perform same hand gestures following other settings

illustrated in the two works [16, 33], while our mmWave radar

continuously collects mmWave signals. We use the mmWave

data and the captured ground truth labels to output MPJPE

and compare them with the typical results shown in mm4Arm

and HandFi respectively.

Table I shows the MPJPE of the 6 existing methods and mm-
Hand. The comparison with the 4 vision methods utilizes the
MPJPE results in our above experiments, and the comparison

with the 2 wireless signal-based methods utilizes the results

TABLE I: MPJPE of mmHand and existing methods.

Methods Dataset MPJPE mmHand

Cascade[28]
MSRA 15.2

18.3

ICVL 9.9

CrossingNet [29]
MSRA 12.2
ICVL 10.2

DeepPrior++[30] MSRA 9.5
HBE[31] ICVL 8.62
mm4Arm Self-collected 4.07 20.4
HandFi Self-collected 20.7 19.0
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Fig. 19: MPJPE and 3D-PCK in dif-
ferent angles.

obtained from the data collected following their experimental

setups respectively. We can first see that although the MPJPE

of mmHand is slightly inferior to other cutting-edge vision

methods due to the resolution limitations of mmWave signals,

the difference is insignificant. For example, the difference of

MPJPE between the result of mmHand and the average value
10.94mm of these visual methods is within 10mm. In compari-
son with the wireless signal-based methods, it can be seen that

mm4Arm achieves a superior performance of MPJPE utilizing

their self-collected data compared to our method. However, it

requires users’ forearms to always face the radar, which may

affect user experience in various interaction scenarios. Besides,

our method achieves a similar performance to HandFi with

each self-collected data. The results indicate that mmHand
can also achieve effective hand joint regression comparable

to vision solutions and other wireless signal solutions.

D. Impact of Distance

The distance between the radar and the sensed target, i.e.,

a user’s hand, may affect the quality of signal reflection

and cause variational signal patterns. Besides, distance also

determines user experience of hand gesture-based human-

computer interaction. We evaluate the impact of the distance

between user’s hand and mmWave radar. In our experimental

setups, each user’s hand is located within the distance from

20cm to 40cm for model construction of mmHand. To evaluate
the impact of different distances, each user’s hand is located

with a distance to the radar between 20cm and 80cm. Fig. 16
and Fig. 17 show the MPJPE and 3D-PCK for hand joint

regression under different distances respectively, where the

threshold of 3D-PCK is set to 40mm. It can be seen from
the two figures that the overall MPJPE and 3D-PCK are rela-

tively stable when their distance is between 20cm and 60cm.
When the distance exceeds 60cm, MPJPE gradually increases
while PCK gradually decreases. From another perspective, the

MPJPE of the palm is relatively smaller than that of the fingers,

and the 3D-PCK of the palm is relatively larger than that of

the fingers, which means regressing the palm joints is more

accurate than the finger joints at different distances.

E. Impact of Angle

We evaluate the performance of mmHand in different angles
of a user’s hand toward the mmWave radar. In the experiment,

a user’s hand is located with the angles from -45◦ to 45◦ as
shown in Fig. 18. We take 15◦ as a step and quantitatively
evaluate MPJPE and 3D-PCK from different angles. Fig. 19
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Fig. 22: Examples of hand pose estimation when users wear gloves.

shows the MPJPE and 3D-PCK from -45◦ to 45◦ with 15◦

steps in the six angle scopes respectively, where the distance

between the radar and the hand is set to 40cm and the

threshold of 3D-PCK is set to 40mm. We can see that the
errors of hand joints increase as the absolute value of the angle

increases. Especially, when the angle exceeds 30◦, the errors
of hand joint regression significantly rise. The reason is that

the sensitivity of angle estimation decreases as the absolute

value of the angle increases according to the principle of angle

estimation. Although there are differences between different

angles, the average MPJPE and PCK are only 17.95mm and

95.78% respectively when the angle is within -30◦ and +30◦,
which can effectively regress hand joints and generate hand

poses. Hence, mmHand is also suitable for some practical

interactive applications that require flexible angles of the

hand’s position.

F. Impact of Human Body

When a user is in front of a mmWave radar, the user’s

body could affect the propagation and reflection of mmWave

signals, which may result in a significant impact on hand

pose estimation. Hence, we further evaluate the impact of

human body on the performance of mmHand. Two types of
experiments where a user’s body is in different positions are

conducted for the evaluation. Specifically, in type 1, a user

stands in front of the radar with the hand outstretched forward

to perform various gestures. In type 2, a user stands on the side

of the radar and the hand is reached out in front of the radar.

Fig. 20 and Fig. 21 show the MPJPE and 3D-PCK of each

user under the two types of experiments. When users stand

in front of the radar, the overall MPJPE reaches 19.1mm and

the overall 3D-PCK is 93.6%. When users stand on the side
of the radar, the overall MPJPE is 18.1mm and the overall

3D-PCK is 95.4%. The differences in performance between
the two types of experiments are insignificant. The reason is

that the distance between the hand and radar is different from

the distance between the human body and radar. mmHand
eliminates most signals unrelated to the hand through filtering

during signal pre-processing. Hence, the capability of hand

pose estimation is less affected by the position of human body.

Fig. 23: Examples of hand pose estimation when users hold different objects.

G. Impact of Gloves

We conduct experiments to evaluate the impact of different

gloves on hand pose estimation. Two kinds of gloves, i.e., silk

gloves and cotton gloves, are worn by the users respectively in

the experiment. The collected data is directly used as a testing

dataset to verify the accuracy of mmHand on regressing 21
hand joints. Fig. 22 shows the result of hand joint regression

and hand mesh reconstruction of users wearing the two gloves.

It can be seen that mmHand’s prediction of the palm is

relatively accurate, but there is a flaw in the prediction of

fingers with some joints leaning together. The overall MPJPE

on the two kinds of gloves is 28.6mm and the overall 3D-

PCK is 86.3%. Compared to the case of not wearing gloves,
the accuracy of hand joint regression slightly decreases when

users wear gloves because the materials of gloves could also

be captured by mmWave signals and cause distortion of the

sensed hand. This also leads to a slight deviation in the

generation of hand meshes. However, despite the decline in

accuracy, mmHand can still generate hand joints that reflect
the basic pose of the hand.

H. Impact of Handheld Object

We evaluate mmHand when users hold objects. In the

experiment, the users hold 4 objects respectively, i.e., a table

tennis ball, a headphone case, a pen, and a power bank. Fig.

23 shows the examples of mmHand in estimating 3D hand

poses when a user’s hand holds an object. It can be seen from

the result in Fig. 23(a) and 23(b) that when the objects held

by the user are small and mainly located in the palm area,

mmHand can accurately regress 21 hand joints and reconstruct
3D hand meshes. The reason is that the objects only cause

slight interference with the reflected signals. Besides, since

the objects are located in the center of the hand, they mainly

affect the palm and the fingers are less influenced, which

can still accurately estimate fingers. However, if the handheld

objects affect the reflected signals in the finger area, or the

area of the object covering the hand is very large, mmHand
may suffer from performance decline. For example, Fig. 23(c)

shows that mmHand mistakenly infers the pen as a finger,

and Fig. 23(d) shows that the fingers generated by mmHand
cannot correspond to the actual situation. This is caused by

the interference of signal reflection of objects.
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I. Impact of Environment

To explore the impact of background interferences, we

present the respective performance of mmHand in the three
environments, i.e., a playground, a corridor and a classroom.

The playground is a large empty area. The corridor has an

empty static background with a few people. The classroom has

complex static background and also dynamic people moving

around. Fig. 24 shows the performance of MPJPE and 3D-

PCK in the three environments. It can be seen that the

difference between different environments is insignificant. For

example, the difference between MPJPE in the playground and

the classroom is only 3.2mm. This is because mmHand can
localize the range of hand by performing bandpass filtering on

mmWave signals, which ignores the background interferences

and focuses on hand sensing.

J. Impact of Obstacle

We evaluate mmHand under obstacle scenarios, i.e., an

object located between the radar and hand to block the line-

of-sight propagation, which can show whether our proposed

solution can overcome the defect of vision-based methods.

We use an A4 paper, a piece of cloth, and a thin board as

obstacles respectively, and calculate MPJPE and 3D-PCK of

the generated hand joints in the scenario. Fig. 25 shows the

performance of MPJPE and 3D-PCK with different obstacles.

The ground truth is obtained from the same gestures’ repeated

performance in line-of-sight scenarios captured by cameras.

It can be seen that different obstacles have different impacts

on hand pose estimation. The MPJPE under A4 paper and

cloth and 23.4mm and 25.1mm respectively, which are slightly

larger errors compared to non-obstacle scenarios. The perfor-

mance of mmHand under the thin wood board suffers from a

decline, i.e., 35.8mm MPJPE and 80.3% 3D-PCK on average.

The results indicate that mmHand can generate hand poses

under some materials such as paper and cloth even if the line-

of-sight propagation is blocked. Hence, mmHand provides an
illumination-robust and none line-of-sight solution for gesture-

based interactions.

K. Time Consumption

We evaluate the time consumption of mmHand. Since
mmHand first generates hand skeletons and then hand meshes,
we analyze the time consumption of the two steps respectively.

Fig. 26 shows the cumulative distribution function (CDF)

of the time consumption for mmHand in generating hand

skeletons, hand meshes, and the overall time respectively. The

0 100 200 300 400 500 600 700 800 900 1000
0.0

0.2

0.4

0.6

0.8

1.0

CD
F 

Time Consumption(ms)

 Hand skeleton
 Hand mesh
 Overall

Fig. 26: CDF of time consumption.

average time consumption of 3D hand skeleton and 3D mesh

reconstruction is 459.6ms and 353.1ms respectively. Com-
pared to only hand skeleton reconstruction, generating hand

meshes does not introduce significant extra delay. Moreover,

the average overall time consumption is 812.7ms and 90%
of the overall time consumption is under 810ms. The above
results indicate that mmHand can reconstruct hand poses with
meshes by a relatively small delay, providing satisfactory user

experience in using the system.

VII. RELATED WORK

In this section, we review works related to mmHand.
Wearable-based Hand Pose Estimation. Hand pose esti-

mation has been a hot topic in the past decade. Early works

exploit wearable devices especially data gloves to capture the

shape and pose of hands and reconstruct 3D hands [1, 2]. Due

to the highly sensitive sensors directly attached to the hand,

wearable-based approaches usually achieve high accuracy in

estimating hand joints. However, users need to wear on-body

devices for hand pose estimation, which brings about intrusive

user experience. Also, the cost of such devices is usually high,

which limits their promotion and wide application.

Vision-based Hand Pose Estimation. Recently, with the
boom in computer vision technology, vision-based methods

dominate hand pose estimation market. Some works [4] rely on

deep learning to generate 3D skeletons of a hand with images.

They build deep learning models and train them on large-

scale public datasets, which usually achieve high accuracy

on hand joint regression. With the increasing demand for the

quality of hand pose estimation, some works [3, 5, 6, 7]

further reconstruct 3D hand meshes. They utilize datasets with

3D annotations to generate realistic hand meshes from RGB

images. However, vision-based methods are highly dependent

on lighting conditions and usually fail when users wear gloves.

Besides, vision-based methods may pose privacy breaches for

users, which is catching the increasing attention of people.

Wireless Sensing Technologies and Applications. Nowa-
days, wireless sensing technology has emerged in IoT scenar-

ios. Wireless signal-based sensing attracts a lot of attention

and yields many applications, such as user authentication

[34, 35], respiratory and heartbeat monitoring [36, 37], sound

sensing [38], autonomous driving [8], etc. Recent works [39,

40, 41, 42, 43] exploit mmWave signals for 3D human pose

estimation and body mesh reconstruction. However, they do

not pay attention to more subtle motions, such as gestures.

Compared to human posture estimation, the motion of hand is

more subtle and complex, which cannot be simply realized by
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direct parameter estimation. Early work [44] utilizes mmWave

radar to track hand motions and recognize gestures. A recent

study [16] exploits mmWave signals to sense human forearm

and therefore infer finger motions, but it ignores the shape of

hand palms and cannot render realistic hand meshes. Besides,

the forearm is required to always face the radar to track finger

motions, which limits the performance when users rotate their

arms. Moreover, since mmWave signals do not directly capture

depth information of hand, the depth information of hand

is inferred and the method only generates pseudo 3D hand

skeletons. Another work [45] implements occlusion-robust

hand pose estimation using RF sensors. This method focuses

more on estimating static hand postures in the presence of

obstacles through dedicated devices, while our work achieves

dynamic and realistic 3D hand reconstruction under various

gestures. A recent work [33] utilizes WiFi signals to construct

3D hand skeletons. However, using WiFi devices to sense hand

gestures requires users to reach out and put the hand between

the transmitting and receiving ends, and the human body needs

to move away from the signal sources. Differently, mmHand
works even if the user faces the radar because the hand and

body can be separated from different ranges.

Compared to existing related works, mmHand utilizes

mmWave signals to construct realistic 3D hand poses, which

is nonintrusive and robust to many scenarios.

VIII. CONCLUSION

In this paper, we propose a hand pose estimation system,

mmHand, which uses a COTS mmWave radar to generate
3D hand skeletons, and reconstruct 3D hand mesh continu-

ously. mmHand first leverages an attention-based hourglass

network mmSpaceNet to extract multi-scale spatial features
of the hand, and uses LSTM to extract temporal features.

After that, mmHand regresses hand joints in 3D space to

generate 3D hand skeletons, and finally reconstructs 3D hand

meshes using the MANO model. Extensive experiments in

real environments demonstrate the effectiveness of mmHand
on hand pose estimation.
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