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Using silent speech to issue commands has received growing attention, as users can utilize existing command sets from
voice-based interfaces without attracting other people’s attention. Such interaction maintains privacy and social acceptance
from others. However, current solutions for recognizing silent speech mainly rely on camera-based data or attaching sensors
to the throat. Camera-based solutions require 5.82 times larger power consumption or have potential privacy issues; attaching
sensors to the throat is not practical for commercial-off-the-shell (COTS) devices because additional sensors are required. In
this paper, we propose a sensing technique that only needs a microphone and a speaker on COTS devices, which not only
consumes little power but also has fewer privacy concerns. By deconstructing the received acoustic signals, a 2D motion profile
can be generated. We propose a classifier based on convolutional neural networks (CNN) to identify the corresponding silent
command from the 2D motion profiles. The proposed classifier can adapt to users and is robust when tested by environmental
factors. Our evaluation shows that the system achieves 92.5% accuracy in classifying 20 commands.
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Tx: inaudible sound

Rx: reflected sound

Fig. 1. In Endophasia, inaudible sounds are generated from a mobile device, radiated toward all directions, reflected by the
face, and received by the mobile device.
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1 INTRODUCTION
The advancement and proliferation of mobile and wearable devices have enabled a broad spectrum of applications.
To interact naturally with those devices, people design various natural user interfaces (NUI), including gesture-
based, touch, and voice inputs, which allow people to issue commands at any point in their daily lives. Among
these, voice input is one of the most natural input options for interactions with those devices using everyday
speech; however, this method suffers from fundamental limitations, e.g., privacy concerns or inference from
background noise or the voices from others, that prevent this method from being adopted widely. To maintain the
simplicity of natural human speech interaction while preserving a user’s privacy, we present an acoustic-based
solution to identify command words, i.e., an intuitive word such as “Pause”, ‘mouthed’ (i.e., spoken without
voicing) by users through measuring the movements and shape changes of a user’s mouth as they silently ‘speak’
the words.
In this work, we propose Endophasia, which utilizes acoustic-based face imaging to detect silent speech

commands. This method relies on a built-in speaker and a microphone in COTS mobile devices to transmit and
receive inaudible audio signals. The received audio is deconstructed to extract the signals reflected by various
parts of the face and a deep learning classifier is adopted to identify the commands.
There are several challenges implementing Endophasia: i) The process of acoustic-based imaging requires

a microphone array [5, 8, 23] or requires users to move their phone following a specific trajectory [25, 30, 40].
However, most COTS phones have 1 to 3 microphones facing different angles, so forming a microphone array
on the phone is not feasible or creates a factor of poor quality. It is also impractical to ask users to move their
phones or other devices precisely while issuing a silent speech command. ii) For the same command, the reflected
acoustic signals could be different among users due to the subtle differences in their lip movements or the signals
reflected by the faces; therefore, it’s difficult to find a universal model that works well for everyone. However,
training a model for an individual user is time-consuming and imposes significant effort on new users.
To address the first challenge, we propose to send a known acoustic training sequence and use the received

signals to compute the channel impulse response (CIR). As a result, the received signals are deconstructed into
impulse at various channel taps. By analyzing the phase shift in each tap, we can profile the motion patterns from
face components with various distances to the device. To address the second challenge, we propose a three-step
training scheme. In the cold start step, we fine-tune a standard ResNet18 CNN network on a large training data-set.
To reduce the burden for a new user, in the warm start step, we use a transfer learning scheme to reduce the
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training data required for the new user. In the online learning step, we allow users to utilize the unlabeled samples
collected while using Endophasia to improve system performance continuously.

We demonstrate the technical feasibility of Endophasia by implementing it on a mobile phone. We tested the
system using 20 commands: “Search”, “Home”, “ScreenShot”, “Skype”, “Camera”, “Play”, “Skip”, “Pause”, “Previous”,
“Mute”, “Answer”, “Call”, “Check”, “Copy”, “Cut”, “HangUp”, “Help”, “Undo”, “Paste”, and “Redial”. The results from
14 participants show 88.83% within-user accuracy. In cross-user experiments, although leaving-one-person-out
shows low cross-user accuracy, by adding a small number of a new user’s samples, we can achieve 92.5% accuracy.

Our contributions include:
• We propose an approach to identify silent speech commands using a built-in speaker and a microphone
using COTS mobile devices.

• We propose to use channel impulse response to deconstruct the reflected acoustic signals and profile the
motion patterns of various face components.

• We propose to use the transfer learning scheme to reduce the data collection time for a new user and use
Few-Shot Adversarial Domain Adaptation scheme to address the issue of unbalanced data.

• A semi-supervised learning scheme is adopted to utilize the unlabeled motion profiles, which are collected
when the user uses the system over time to continuously update the model and improve the classification
accuracy.

• We perform an extensive evaluation to show the accuracy and robustness of Endophasia.
This paper is organized as follows. Sec. 3 details the system design. In Sec. 4, we extensively evaluate the

performance of Endophasia. Related works are introduced in Sec. 2. Lastly, In Sec. 6, we conclude the work.

2 RELATED WORK

2.1 Silent Speech Interface
The idea of Silent Speech Interface (SSI) [11] is raised because of the increasing possibility of speech processing
but without an intelligible acoustic signal. The SSI is mainly applied in two typical scenarios: i) As an aid for the
speech-handicapped. ii) Operating in silence-required or high-background-noise environments as part of the
communication system. Several SSIs have been proposed to recognize inaudible speech with either bulky/invasive
sensor deployment or non-invasive wearable devices. By invasively implanting/placing sensors within human
bodies, researchers proposed solutions to recognize the brain activities in the speech motor cortex [6], or
capture tongue and jaw movements with in-mouth magnetic beads [21] or capacitive touch sensors [26]. The
inconveniences caused by these invasive solutions impede their widespread use. To offer more practical or
affordable solutions, other studies have designed schemes to identify speech content by using alternative sensors
(e.g., EEG [37], sEMG [32], ultrasound imaging [24]) to detect tongue, facial, throat movements, and microphones
attached to the skin to hear non-audible murmurs (NAM) [20, 35, 36] or put close to the front of the mouth to
capture whisper-like tiny voice while ingressive breathing [17]. Although these solutions are non-invasive, they
require attaching specialized sensors on the human body. Attaching sensors for the speech-handicapped is an
acceptable solution to help them to ‘speak’ again. However, in general cases, SSIs are mainly used to deal with
the occasional challenging scenarios, e.g., silence-required environments, for most users. Therefore, more feasible
and convenient solutions are proposed.

2.2 Camera-Base Solutions
A natural idea is to utilize the cameras on COTS devices. Hence no additional sensors are required. Therefore, some
recent works are proposed to use camera-based techniques for lip reading. LipNet [2] proposed an end-to-end
sentence-level lip reading method, with a high accuracy of up to 95.2% in GRID Corpus [10]. However, the GRID
Corpus is very different from the daily conversation scenarios because of the limited command set and the
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same grammar in all sentences. Chung etc. conducted experiments on the Oxford-BBC Lip Reading in the Wild
(LRW) dataset [9], which consists of up to 1000 utterances of 500 different words spoken by hundreds of different
speakers in the wild. They only achieve low recognition accuracy in general sentence lip reading with a word
error rate of 50.2%, which is unusable for general purpose applications. This is mainly caused by two reasons:
i) In general speech, some phonemes often result in similar lip movements. ii) In uncontrolled environments,
or in the daily conversation, the amount of information carried by lip movements is not sufficient for general
speech recognition, because sometimes people may do little mouth movements when speaking. To make the
camera-based silent speech truly usable on COTS devices in daily life, Sun, etc. proposed Lip-Interact [46], which
supports 44 pre-defined commonly used Chinese commands for mobile phones, instead of recognizing general
speech. They use the front camera in a mobile phone to capture users’ mouth movements, achieving an average
accuracy of 95.464%. Nevertheless, using a camera on mobile devices has many limitations, such as (1) unstable
recognition accuracy (dim light decreases accuracy). (2) Currently, many mobile devices do not have a camera,
like smartwatches and Google glass. (3) Tiny wearable devices cannot support long periods of video recording
because of power consumption. (4) Taking videos for lip reading may occupy the full capability of a camera,
implying that this camera can not execute other concurrent tasks, like taking a video call. To address these issues,
Endophasia utilizes an acoustic-based imaging solution to use inaudible sound produced by COTS mobile devices.

2.3 Acoustic-based Tracking and Imaging
Many acoustic-based tracking technologies using COTS mobile devices have been proposed because of the wide
availability of microphones and speakers. These works transmitted inaudible acoustic signals using speakers in
various waveform including sinusoidal waves [27, 48, 52, 53], FMCW [29, 31, 51, 55], PN sequence [38], GSM
sequence [54], Zadoff–Chu sequence [47], etc. When the reflected signals are captured, according to the type of
waveform used, different methods are proposed to estimate the distances which include the Doppler frequency
shift [3, 27, 28, 53], phase change [51, 52], channel state [47, 54], time-of-flight [38, 55], envelope difference [48],
or the frequency of the mixed signals [29, 31, 55]. The methods proposed in these works can potentially be used to
track facial movements for identifying silent speech commands; however, these methods either require more than
one microphone or speaker to track multiple objects or have limited resolutions to distinguish objects which are
as close as lips. Unlike these works, Endophasia deconstructs the signals reflected from various face components
and generates corresponding 2D motion profiles. The 2D motion profiles can distinguish reflectors which are
more than 0.7cm apart and provide information with finer granularity for silent command classification.
Recently, acoustic-based imaging technologies are also proposed to use one speaker and one microphone

on COTS mobile phones to reconstruct the 2D structure of the space or objects. AIM [30] used a speaker and
a microphone on a mobile phone to send acoustic signals and apply Synthetic Aperture Radar technology to
reconstruct the 2D image of a remote object. SAMS [40] used a speaker and a microphone on a mobile phone
to send/receive FMCW signals and estimate the distance from the phone to a wall. By combining the distances
with the walking trajectory estimated from the accelerometer, SAMS can reconstruct the 2D map of the building.
Although these works can obtain 2D images of the target object, there are two issues that prevent them from
being applicable to silent command recognition. First, these works require the phone to move in a specific pattern
to image an object; however, that is impractical to ask users to move their phones precisely while issuing a silent
speech command. Second, these works assume the targeted object is stationary during the imaging process;
however, the face components are changing while issuing a command.

3 SYSTEM DESIGN
Audio input and output quality of mobile devices are becoming better and better due to the evolvement of
hardware and software of speakers/mics. However, the high frequency band (17 − 24KHz) may be easily ignored
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Fig. 2. System overview.

by researchers and engineers, because acoustic signals in this frequency range are inaudible to most adults.
Endophasia fully utilizes acoustic signals in the inaudible band to capture the user’s facial movements. To use
Endophasia, a user holds a phone and puts it close to the mouth, pressing the volume button to start recording.
The acoustic signal is emitted and received by speaker/mic on the lower side. Then the user silently issues a
command by mouthing the verbal command but not vocalizing the sound, pressing the volume button again to
stop recording. The inaudible acoustic signal will be reflected by the moving facial components and received by
the microphone. Finally, Endophasia will predict the command and trigger the corresponding functionalities.

3.1 System Overview
Endophasia uses inaudible sound signals actively transmitted and received by mobile devices to capture changes
in mouth shape while giving silent commands. As shown in Fig. 1, inaudible sounds generated from a built-in
speaker on a mobile device travel through a straight line, are then reflected by the face and received by a built-in
microphone. Because most commonly available speakers are omnidirectional, a single transmitted signal radiates
in all directions in free space and will reach the microphone via multiple paths (e.g., paths going through different
reflectors). Therefore, the received signal is a superposition of multiple signals with various delays.

The intuition behind Endophasia is that, while giving a silent speech command, the user’s face, especially the
mouth, changes accordingly over time. If we can deconstruct audio signals reflected by the various parts of the
face and monitor the changes, we may infer the corresponding silent command.

Fig. 2 shows the system flow of Endophasia. To identify a silent command, Endophasia generates and upsamples
a Global System for Mobile (GSM) training sequence to produce inaudible sound (Sec. 3.2). The reflected signals
are captured by a microphone and used to estimate channel states and segmented to produce a motion profile
corresponding to facial movements (Sec. 3.3). In the training phase, we first collect a large amount of data from
various users to train a CNN base network in the cold start step (Sec. 3.4.1). In the warm start step, in order to
transfer the knowledge for a new user, a transfer learning technique is adopted to adapt the model to unseen
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Fig. 4. 26bit GSM training sequence with 4 guard bits.

users (Sec. 3.4.2). In the real-time prediction phase, the motion profiles are fed into the customized model and
return prediction results. At the meanwhile, these unlabeled motion profiles are also collected for the online
learning step where a semi-supervised learning scheme is adopted to utilize these unlabeled motion profiles
to continuously update the model and improve the classification accuracy (Sec. 3.4.3). We detail each system
component hereafter.

3.2 Transmitting Inaudible Audio
Issuing silent speech commands involves the movements of various face components, including the upper lip,
lower lip, cheeks, etc. The received signals, therefore, are the superposition of signals reflected from each of
these components. In order to accurately identify a silent command, we need to deconstruct the received signals
to reveal the movement patterns of these face components. To achieve that, we borrow the idea from wireless
communication, where we send a known acoustic training sequence and use the received signals to compute the
channel impulse response (CIR). CIR is a characterization of all signal traversal paths with different delays and
magnitudes [42]. Specifically, it is a vector of channel taps where each channel tap corresponds to multi-path
effects within a specific delay range. Because the reflected signals from various face components travel through
different paths with different lengths, by focusing on the CIR changing patterns of certain channel taps whose
delay ranges are close to the distances to these face components, we can effectively profile their movements.
Fig. 3(a) further details the signal generation and transmission process.
GSM Signal Generation: As described prior, a transmitter sends a known acoustic training sequence for channel
estimation. Let S = {s1, ..., sK } denotes the training sequence, where K is the length of the sequence. It can be
any random bits. We choose the 30-bit GSM sequence [15, 41], where 4 guard bits are zero-padded. As shown
in Fig. 4, we modulate S to the Binary Phase Shift Keying (BPSK) symbols, where bits 0 and 1 are mapped to
baseband symbols 1 and −1, respectively. GSM sequence has the property of high autocorrelation [1], which will
be utilized for channel estimation (see Sec. 3.3). There are some commonly-used training sequences having the
same property, such as the Barker sequence [18] and chirp-like Zadoff-Chu (ZC) sequence [39], etc. These three
sequences provide similar performance for Endophasia (see Sec. 4.2.3). We chose the GSM training sequence
because it has been widely used in single carrier communication and is known to have desirable properties for
synchronization and channel estimation.
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Fig. 5. The representations of the up-sampled source trinaing sound of GSM, ZC, and Barker sequence in time and frequency
domain.

Up-Sampling: To transmit a modulated symbol over the inaudible frequency band, we first need to up-sample
the signal to reduce its bandwidth so that it does not exceed the maximum allowed bandwidth of the inaudible
band. Let fS and BW denote the sampling rate and the channel bandwidth, respectively. To limit the bandwidth
of the transmitted symbol, we use the fast Fourier Transform (FFT) to convert the time domain audio signal to
the frequency domain and perform zero-padding to limit the bandwidth of the audio signal. Then we perform the
inverse fast Fourier Transform (IFFT) to convert it back to the time domain.

After the up-sampling, the length of the audio signal becomes 30 × fS/BW . In Endophasia, we set fS = 48000,
which is a common audio sampling rate and supported by most of the available mics, speakers, and mobile
devices. We chose BW = 6000 (i.e., set the bandwidth to 6KHz), so the length of the up-sampled signals is 240.
That is, each GSM signal can be transmitted within 240/fS = 5ms . The advantage of using such a short sequence
is that it can better capture the quick movements of the face and the mouth while giving silent commands. The
downside of using a short signal is the inter-symbol interference (ISI) [16]. ISI is a form of distortion in which one
symbol interferes with subsequent symbols. In our case, if the reflected path is longer than 240/fS ×vs/2 = 84cm
(vs = 343m/s denotes the sound speed in the air), the reflected signal overlaps the next signal resulting in
ambiguous reflectors. Fortunately, Endophasia requires users to move their mobile device close to their face
(e.g., a few centimeters) and all the face components related to silent commands are with 84cm from the mobile
device; then, after having the up-sampled audio signals, we up-convert the signal to transmit it over the inaudible
band. Let fc denote the central frequency of the passband. We change the frequency of the signal by multiplying
√
2cos(2π fct) to the baseband signal: x(t) =

√
2cos(2π fct)s(t), where s(t) and x(t) are up-sampled baseband and

passband signals, respectively. After up-conversion, the sequence is normalized before being played by a speaker.
Fig. 5 shows the acoustic sound generated from GSM, ZC, and Barker training sequences in time and frequency
domain, respectively. We omit the spectrogram of ZC and Barker sequences because they look similar to that
of GSM as shown in Fig. 5(c). As expected, the bandwidth usage of the source sound manifests from 17KHz to
23KHz for all of the three training sequences.

3.3 Receiving Audio
Fig. 3(b) illustrates the signal reception and baseband conversion process.
Channel Estimation: The received passband signaly(t) arriving at the microphone is converted into a baseband
symbol r [n] using the following down-conversion process: y(t) is multiplied by 2cos(2π fct) and −2sin(2π fct)
to get the real and imaginary parts of the received baseband symbol, respectively. We then perform low-pass
filtering to remove background noise. This gives us the following baseband signal:
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Fig. 6. The CIR and differential CIR estimation of the command “ScreenShot”.

r (t) =
√
2cos(2π fct)y(t) − j

√
2sin(2π fct)y(t)

= 2e−j2π fc ty(t)

The received signal via multi-path is traditionally modeled as the Linear Time-Invariant (LTI) system: suppose
the free space has L paths and the received signal from the path i has delay τi and amplitude ai which is determined
by the propagation distance between the paths and reflectors. Then the received signal rx(t) can be modeled as
the summation of L signals:

rx(t) =
L∑
i=1

aitx(t − τi ) = h(t) · tx(t)

where tx(t) is the transmitted passband audio at time t and h(t) is the channel impulse response (CIR). In the
analog world, h(·) is a continuous function and modeled using Dirac’s delta function [14]. However, because a
microphone captures baseband audio symbols as a discrete output of h(·) sampled at Ts , CIR is regarded as the
discrete-time filter in the LTI system:

h[n] =
L∑
i=1

aie
−j2π fcτi sinc(n − τiW )

where h[n] is called the nth channel tap, sinc(t) = sin(π t )
π t , and fc represents the central frequency of the

transmitted signals. sinc function which is also called sampling function has a high and narrow peak at the point
where the delay τ matches the delay of the corresponding nth tap (i.e., n = τiW ). Because the auto-correlation
of a GSM sequence is close to zero with any delay within one period, we can use the auto-correlation as an
approximation for the CIR h[n]:

h[n] ≈ h′[n] = дsm∗
rx (−n) ∗ дsmtx (n)

where дsmrx (t) and дsmtx (t) represent the received and transmitted GSM signals at time t , respectively; the
operation ∗ represents the Hermitian transpose.
In Endophasia, h′[n] is sampled with an interval of Ts = 1/fS = 0.021ms where fS = 48000 representing the

audio sampling rate. It implies the propagation distance is 0.7cm (343m/s × 0.021ms) per tap. In other words, at
any time t , we can monitor the reflected signals in each of 240 taps where audio signals in the tap n correspond
to those traveling through a distance of 0.7 × n cm. Therefore, Endophasia can distinguish two reflectors, which
are more than 0.7cm apart. The resolution is enough for us to capture the changes occurring in the posture of the
lips.
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Fig. 7. Differential CIR estimation of various silent speech commands.

Facial movements while giving silent commands incur both magnitude and phase changes h′[n]. Fig. 6(a)
shows the magnitude of the CIR when the user gave the command “Search”. The x-axis represents time t while
the y-axis represents taps n. Regions in red indicate a strong reflection at the corresponding tap (i.e., distance) in
the CIR estimation. While we can observe there are several reflectors in the CIR estimation and they change
while giving the command, it is difficult to distinguish the reflected signals as they are much weaker than those
from the line-of-sight path or self-interference. To remove these static paths and amplify the changes, we take
the difference of the CIR estimation by subtracting it from the same tap in the previous time snapshot. The result
is shown in Fig. 6(b). The value (i.e., color) of each point represents the difference of the tap n at the time t .
Therefore, we can use P(n, t) to represent a differential CIR estimation and treat it as an image.

Fig. 7 shows the differential CIR estimation from various commands. The brighter areas indicate stronger
movements at the corresponding distance and the time. We can make two observations. First, the brightest areas
usually are located at tap 5-20, which corresponds to 1.8-7.2cm. Since the phone was placed at around 1 to 3cm
from the mouth while the data was being collected, it implies that the brightest areas capture the reflection from
the lip and cheek movements as we would expect. Second, different commands exhibit very different patterns due
to their various facial movements. The results provide preliminary support that the differential CIR estimation
profiles facial movements and can be used for silent speech command classification.
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Fig. 8. Example of segmentation flow: The figures from top to bottom represent the results of original differential CIR
estimation of “Search” command, after the summation across taps, after peak amplification, and after applying a Gaussian
filter.

Segmentation:Differential CIR estimation P(n, t) can be viewed as an n-factor time-series, which is continuously
retrieved from the audio streaming captured by the microphone. The timestamp of pressing the button can
be used to locate a coarse region containing a command. Then, to extract the desired command, we need to
segment the time-series of the differential CIR estimation. The segmentation algorithm should satisfy three
criteria: i) It should be able to cover a whole command. ii) Segments should have a fixed window length to avoid
the distortion in the shape of the brighter areas. iii) The command should locate at the center of each segment to
avoid misclassification caused by the location of brighter areas. As a result, we propose a segmentation scheme,
as shown in Fig. 8. For time t , we compute the summation of CIR changes across taps (P̂(t) =

∑n
i=1 P(n, t)), before

normalization. After that, we amplify the difference between peaks and noise (P̂ ′(t) = P̂(t)2). Then we apply the
Gaussian filter to remove random noise and merge nearby peaks. Finally, for each peak, whose maximal value is
located at time t1, we segment the time-series using the time window [t1 −T /2, t1 +T /2]. T represents the size
of each segment. For our experiments, the average time duration µ of commands in our dataset is 1.08s and a
standard deviation σ is 0.21s. The ground truth is measured by VICON [50] (see Sec. 4.1). Therefore we set T to
T = µ + 3σ = 1.71s to ensure that, statistically, 99.87% segments include a complete command. The accuracy
change caused by varying length of T is evaluated in Sec. 4.2.4.
With the proposed segmentation scheme, we get a 2D array of differential CIR estimation P(n, t) where

t = t1 −T /2 . . . t1 +T /2,n = 0 . . . 239. After that, the estimation P(n, t) is resized to a 224 × 224 image to reduce
the computational load in the training phase, which represents a 2D motion profile of a silent speech command.
Hereafter, we show how to train a model and use the model to identify the command of a given 2D motion profile.
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3.4 CNN Classifier
To classify the 2D motion profiles of various commands, we adopt CNN [43] as a classifier since CNN is widely
used for image classification and shows promising accuracy. Our CNN model is designed to be in accord with
three principles: i) The model needs to achieve a high accuracy to offer a high-quality user experience. ii) A new
user should be able to use the system with little effort, i.e., only needing to collect a little data before using the
model. iii) The model can be further improved upon while the new user uses the model over time.
Therefore, the training process for our CNN model includes three steps. In the cold start step, we collect

a large amount of data from various users to train a base network that can extract representative features to
identify commands from these users accurately. In the warm start step, a transfer learning technique is adopted
to adapt the model from the cold start phase for new users. The transfer learning technique only requires the
new user to collect a small amount of data. In the online training step, a semi-supervised learning scheme is
adopted to utilize the unlabeled motion profiles, which are collected when the user uses the system over time in
order to continuously update the model and improve its classification accuracy.

3.4.1 STEP 1. Cold Start: Train a Feature Extractor. In the cold start step, we collect a large amount of data from
various users to train a feature extractor which can extract representative features to identify commands from
these users accurately. Assume that we have a large amount of labeled data Ds . We call this source domain,
whose input space is denoted as Xs and label space is denoted as Ys (i.e., the commands). The goal of the cold
start step is to tune a CNN network on Ds . To achieve this, we adopt a pre-trained ResNet18 [19] as our base
network. By conducting experiments on Ds , we found that ResNet18 converges quickly and requires less time
compared with other frequently used CNN networks, such as VGGNet, InceptionNet, DenseNet, and SqueezeNet
(see Sec. 4.2.1). We denote the mapping function of our CNN network as f , which is composed of two functions,
i.e., f = h ◦ д. Here д : X → Z, which is called a feature extractor, represents an inference from input space
X to feature space Z, while h : Z → Y, which is called fully connected layers, represents an inference from
feature space to output space Y. With this notation, we represent the CNN network trained in source domain
as fs = hs ◦ дs , where дs is composed of 4 ResNet layers and hs contains a single fully connected layer. Fig. 9(a)
shows the process of training such a network, which is a typical training process of CNN networks. The total
loss in one epoch is computed by the average loss of 2D motion profiles with a standard Cross-Entropy Loss ℓ:

Ls = E[ℓ(fs (X
s ),Ys )] (1)

Data Augmentation: One thing to note is that, instead of feeding the 2D motion profiles to the CNN model
directly, we first apply a data augmentation scheme to improve the generalization ability of the model and alleviate
the overfitting problem. Specifically, given a 2D motion profile, the data augmentation scheme randomly crops
the 2D motion profile and flips the cropped portion horizontally. The size of the cropped portion is randomly
selected, which ranges from 8%-100% [7] of the original 2D motion profile size. The scheme increases the dataset
size by 200 times.

3.4.2 STEP 2. Warm Start: Transfer to a New User. Although fs performs well inDs , it may not be well generalized
for a new user, because of the distinct characteristics in the 2D motion profiles for different users.
Assume that we have a small amount of labeled data Dt . We call this target domain, whose input space is

denoted as Xt and label space is denoted as Yt . The goal of the warm start step is to transfer the knowledge
learned fromDs toDt . One intuitive method to tackle this problem is to pre-train a model inDs and then re-train
it inDt . This process is known as fine-tuning. Although fine-tuning is wildly used for its simplicity, when there is
only a small amount of labeled data in Dt and a deep neural network like ResNet18 is used, the performance may
not be satisfactory due to the underfitting problem in the target domain. In our case, fs contains the knowledge
learned from Ds and has 11.2 million trainable parameters. Since Dt contains only a small amount of labeled
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(a) Cold Start: train a base network.

2D motion 
profile

feature 
extractor 𝑔( features fully connected 

layer ℎ( 𝐿(

paired 2D 
motion profile

feature 
extractor 𝑔( features

fully connected 
layer ℎ( 𝐿(

feature 
extractor 𝑔' features

fully connected 
layer ℎ' 𝐿'

domain-class 
discriminator 

(DCD)
𝐿*+*concatenate

labeled 2D 
motion profile

feature 
extractor 𝑔' features

fully connected 
layer ℎ'

domain 
discriminator ℎ"

domain 
discriminator ℎ0

𝐿,
unlabeled 2D 
motion profile

weighted 
sum

-𝑦"

-𝑦0

𝐿'

-𝑦

labeled

unlabeled
𝐻(-𝑦) 𝐿456

𝐿75*5

(b) Warm Start: transfer to a new user.
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(c) Online Training: train with unlabeled data.

Fig. 9. The training scheme for Endophasia is demonstrated by showing the way to compute the loss at each step. After
obtaining the loss in each epoch, the model can be updated by back-propagating the loss. The training scheme is composed of
three main steps: cold start,warm start and online training. (a) cold start: A typical training process for a CNN network.
Train a base network (fs = hs ◦ дs ) with a large number of 2D motion profiles from source domain. (b) warm start: Update
fs and ft by freezing the parameters in the DCD so that the DCD can no longer distinguish the paired 2D motion profiles. By
applying the FADA scheme, the knowledge learned in fs can be transferred to ft with considerably less data from a new user.
(c) online training: The features of each 2D motion profile will be fed into ht , while only unlabeled 2D motion profiles are
fed into domain discriminators (h1, ...,hk ). During the daily use, many unlabeled 2D motion profiles will accumulate in the
data pool. Endophasia utilizes the unlabeled 2D motion profiles to continuously improve the performance of the personalized
model ft , while introducing no extra burden to the user.

data, fs can not be fully tuned and the transferable knowledge will not be sufficiently utilized (as we show in
Sec. 4.3.3).

To address the imbalance issue, we adopted the Few-Shot Adversarial Domain Adaptation (FADA) scheme [33].
FADA dividesDs and Dt into 4 groups, denoted as G = G1 ∪G2 ∪G3 ∪G4. G1 is composed of pairs of 2D motion
profiles of the same command, which are randomly selected from Ds . G2 is composed of pairs of 2D motion
profiles of the same command but, in each pair, one is from Ds while the other one is from Dt . G3 contains
pairs of 2D motion profiles of different commands randomly selected from Ds . G4 contains pairs of 2D motion
profiles of different commands where one is from Ds and the other one is from Dt . The 4 groups contain the
same amount of sample pairs so that they are balanced. Moreover, the dataset is enlarged by pairing 2D motion
profiles fromDs andDt because each sample pair in G is different. Fig. 10 presents examples of paired 2D motion
profiles.

The training process contains two iterative steps. First, we need learn a domain-class discriminator (DCD) [33]
to distinguish the 2D motion profile pairs from G. The DCD is composed of two fully connected layers with
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(a) G1 (b) G2 (c) G3 (d) G4

Fig. 10. Example of paired 2D motion profile in Few-Shot Adversarial Domain Adaptation (FADA) scheme. (a) In G1, the
command of the two profiles is “Pause” from the source domain. (b) In G2, the command of the two profiles is “ScreenShot”.
The one on the left is from Ds and the one on the right is from Dt . (c) In G3, the commands of the left and right profiles are
“Copy” and “Skip”, respectively. Both are from Ds . (d) In G4, the command of the left profile is “Undo” from Ds and the
command of the right profile is “Play” from Dt .

ReLU and DropOut. ReLU is used to ensure the non-linear mapping from a feature space to a domain output
space [34] and DropOut is used to prevent overfitting [44]. To initialize the DCD, first we make a copy of fs
and call it ft = ht ◦ дt . дs and дt deals with the first and the second 2D motion profiles of each sample from G,
respectively. Then, outputs of дs and дt are concatenated and fed into the DCD. In each epoch, we compute the
standard Cross-Entropy Loss and backpropagate errors to update the DCD while keeping the parameters in дs and
дt frozen. Second, we update fs and ft while keeping DCD unchanged by minimizing the loss function defined
below:

LFADA = Ls + Lt − λE[YG1loд(DCD ◦ д(G2)) − YG3loд(DCD ◦ д(G4))] (2)

where λ strikes a balance between classification and confusion, YGx represents the label of a sample from group
Gx (x = 1, ..., 4). DCD ◦ д(·) represents the function of the composition of DCD and two feature extractors. Lt is
the loss inDt , computed in the same manner with Ls . Ls +Lt is designed to maintain high classification accuracy.
The term −λE[yG1loд(DCD ◦д(G2)) −yG3loд(DCD ◦д(G4))] is denoted as LDCD in Fig. 9(b) and is used to confuse
the DCD such that it can no longer distinguish between G1 and G2 as well as between G3 and G4. Lastly, we
repeat the above two steps to iteratively update fs , ft and the DCD until ft converges in our dataset. As a result,
the feature extractor дt can be updated to extract features that are only sensitive to commands but not domains.
The feature spaceZt will have the same distribution withZs such that the DCD can not distinguish samples
from G anymore. Therefore, the knowledge learned in Ds by fs will be fully utilized when training ft in Dt .

3.4.3 STEP 3. Online Training: Improving the Model with Unlabeled Data. Since we have a customized model ft
for a new user trained with few training 2D motion profiles, we are interested in making the system more robust
and accurate with daily use. To achieve that, we adopt a semi-supervised learning scheme to utilize the unlabeled
2D motion profiles, which are collected when the user uses the system over time. We modified a transfer learning
scheme of domain adaptation with Selective Adversarial Network (SAN) proposed by Cao et al. [7]. The network
of the scheme is shown in Fig. 9(c). We assign a domain discriminator to each class of the commands, which are
denoted as hk , where k = 1, 2, ..., |Y|. The scheme is modified as a semi-supervised network in our system. The
intuition behind the modification is that we use the labeled data Xt (collected in the warm start step) to update
ft and ensure that the labeled data can be accurately distinguished. In the meanwhile, we use the unlabeled data
Xr (collected via the daily use of Endophasia) to update each domain discriminator hk as well as ft . We call the
union of Xt and Xr as Xu . As a result, ft is iteratively improved and can better map the labeled and unlabeled
data to a feature space where they have the same distributions.
Specifically, the loss function of the entire network is designed below:
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LSAN =Lt + E[H (ft (X
r ))] −

|Y |∑
k=1

E[ft (X
r )]E[ft (X

u )ℓ(hk ◦ дt (X
u ),d)] (3)

whered represents the domain of each 2Dmotion profile. In our case, it denotes the 2Dmotion profile is fromXt or
Xr . Lt is used to maintain the high classification accuracy of ft in Dt . The term −

∑ |Y |

k=1 E[ft (X
r )]E[ft (X

u )ℓ(hk ◦
дt (X

u ),d)] is to compute the sum of weighted domain loss, which aims at confusing domain discriminators. Note
that this loss is weighted in proportional to ŷ = ft (X

r ), which represents the probability of the predicted labels
for the unlabeled data. Moreover, to speed up this process, a conditional-entropy loss is added: H (ŷ) = −ŷT loдŷ,
which narrows down the probability density of ŷ and boost the performance of the domain adversarial mechanism.

Note that the aforementioned semi-supervised scheme does not assume the number of unlabeled data of
various labels is balanced. It implies that a user does not need to ‘speak’ all commands before the online learning
scheme can be applied. Therefore, Endophasia can optimize the accuracy of the frequently used commands and
have little impact on those unused or less-used commands.

4 EVALUATION

4.1 Experiment Configuration

System Implementation: We developed an Android Application to generate inaudible signals and collect
reflected signals. The recorded signals are sent to a server for processing and prediction in real-time.
Data Collection:We spent 6 weeks to collect 10100 silent command samples (includes 17 hours of audio signals)
from 14 participants. The participants include 12 males and 2 females, ranging in age from 22 to 26 years old. All
of the participants are well-educated, university students, capable of speaking English. Before the experiment, we
explained the goal of Endophasia and presented the way to issue silent speech commands, then gave participants
5 minutes to get familiar with the system. After that, the participants were instructed to sit in front of a desk
where a mobile phone was fixed by a holder; then, they silently issue commands at 3cm away from the phone.
They were required to issue 20 silent commands and repeat 30 times. We used VICON vero [50] to localize the
phone and track lip movements, as shown in Fig. 11(a). VICON is a camera-based tracking tool that can track the
markers (5mm diameter spheres with special coating) with a 1mm error. The trajectories collected from VICON
are used as the ground truth to compute the distances and angles between participants and the phone and to
determine the start and end time when issuing commands. Considering that the participants would likely become
more familiar with the mechanism of the system during the experiment, a Latin Square [4] was used to determine
the collection order of each command. If the commands were collected in the same order, the first few commands
might have a relatively bad classification accuracy. With the Latin Square, this error would be distributed fairly
into each command. Moreover, the participant could have a short pause to re-adjust his or her posture between
each command to simulate the real application scenarios. Each participant spent around four and a half hours to
finish the experiments.

4.2 Micro-benchmark
In this section, we evaluate the impact of system parameters and motivate the values selected in the following
evaluation.

4.2.1 Impact of Different CNN networks. The structure of the CNN network has a significant impact on perfor-
mance. Thus, we fine-tune 7 pre-trained CNN networks using our dataset and the accuracy, rate of convergence,
and training time are shown in Fig. 12. Each network is tuned for 300 epochs to ensure convergence. We can see
that the ResNet family, InceptionNet, and DenseNet outperform VGGNet and SqueezeNet in terms of the accuracy
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(a) Data collection configuration. (b) Markers.

Fig. 11. (a) The mobile phone is held by a holder and 4 VICON cameras are used to track the location of markers. (b) 3
markers are attached to the back of the phone, which are used to determine the plane of the phone. 4 markers are attached
around the user’s mouth.

(a) Accuracy and convergence rate. (b) Running time.

Fig. 12. The performance of 7 CNN networks.

Fig. 13. The accuracy under various augmentation ratios.
The x-axis represents the ratio of the training data size w/
data augmentation to that w/o augmentation.

Fig. 14. The impact of windowing time T in the segmenta-
tion algorithm on recognition accuracy.
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(a) GSM. (b) ZC. (c) Barker.

Fig. 15. The 2D motion profiles generated by different training
sequences.

Fig. 16. The impact of different training sequences
on recognition accuracy.

and the rate of convergence. Although the accuracy of InceptionNet is slightly better (0.9% better than ResNet18),
the training time of ResNet18 is 61.27% less than that of InceptionNet. Therefore, we choose a pre-trained ResNet18
as our CNN network.

4.2.2 Impact of Data Augmentation. We evaluate the impact of the data augmentation scheme. As described in
Sec. 3.4.1, the data augmentation scheme randomly crops 2D motion profiles to augment the number of inputs.
We vary the number of augmented motion profiles and the results are shown in Fig. 13. The x-axis represents
the ratio by which the training dataset size is increased. We can see that the accuracy increases by 13.3% when
the number of augmented motion profiles increases from 0 to 200 times. After that, increasing the augmented
profiles does not improve the accuracy markedly. The results suggest that the data augmentation scheme can
effectively increase the generalization ability of our system and alleviate the overfitting problem.

4.2.3 Impact of Training Sequences. To evaluate the impact of different training sequences, we collected additional
2D motion profiles generated by a 13-bit Barker sequence and a 30-bit ZC sequence from one participant. Similarly,
this participant collected 30 samples for each command by using both the Barker sequence and the ZC sequence.
Example 2D motion profiles of the command “ScreenShot” generated by these three training sequences are shown
in Fig. 15. The brighter areas of GSM and Barker seem to appear in all taps, while those of ZC only appear in
lower taps. This phenomenon is due to the fact that the autocorrelation result of the ZC sequence has a smaller
side lobe gain compared with that of the GSM sequence and the Barker sequence. However, the side lobes may
bring more features for the 2D motion profiles, which would likely contribute to the classification accuracy.
Our experiments demonstrate that these three sequences result in a similar performance in Endophasia, but the
accuracy for the GSM sequence is slightly greater than that of the ZC sequence and the Barker sequence, as
shown in Fig. 16. The result implies that no significant difference appears among these three training sequences.
Thus, we choose the GSM sequence as our training sequence mainly because of the wide adoption in single
carrier communication and the well-known properties for synchronization and channel estimation.

4.2.4 Impact of Windowing Time. The segmentation algorithm is proposed in Sec. 3.3. To evaluate the impact of
the fixed windowing time, we segment the 2D motion profiles with varying time windows in the range from 1.08s
to 2.13s with a resolution of the standard deviation, which is 0.21s . Then we use a pre-trained ResNet18 CNN
network with a data augmentation ratio of 200 to test the accuracy. As shown in Fig. 14, the accuracy reaches
the maximum 88.83% when the windowing time equals 1.71s and drops to 82.09% beyond this value. It implies
that if the windowing time is extended, additional noise is likely to be included, resulting in the squeeze of the
brighter areas of the commands. However, if the windowing time is short, some segments cannot cut off the full
commands. Therefore, we set the windowing time T to 1.71s .
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Fig. 17. The accuracy of within-user test and leave-one-user-
out test in the cases of various training data sizes.

Fig. 18. The performance of the online learning scheme. The
x-axis represents the number of unlabeled samples.

4.3 System Performance
In this section, we evaluate the overall system performance and detail the performance of each component.

4.3.1 Within-User Performance. We fine-tune a pre-trained ResNet18 in Ds with 10-fold cross validation and
incrementally increase the training data size from 560 samples (i.e., 2 samples × 20 commands × 14 users) to
5600 samples (i.e., 20 samples × 20 commands × 14 users), while the remaining 2D motion profiles are used for
evaluation. Note that the following sections have the same data separation scheme. The results are highlighted
by the blue line seen in Fig. 17. The accuracy in the validation set increases from 40.81% to 88.83% when the
training data size equals 5200. The results suggest that the dataset is highly separable, which further prove
that the reflected acoustic signals indeed carry the information of users’ facial movements and Endophasia can
effectively extract this information.

4.3.2 Leave-One-User-Out Performance. We evaluate the leave-one-user-out performance to test the accuracy of
applying the CNN network to a new user directly. We train a CNN model by using the 2D motion profiles of
13 users and test the model with the 2D motion profiles of the last user. This process is repeated 14 times and
the average accuracy is reported. The results are highlighted by the red curve shown in Fig. 17. The accuracy
increases from 19.54% to 39.32% when the training size increases from 520 to 2600. After that, the accuracy
fluctuates at around 40% and does not improve while further increasing the training size. It implies that when
different users issue the same command, their facial movements indeed share some similarities because the
accuracy for a new user achieves 40% for 20 commands. However, the accuracy converging at 40% suggests that
the distinct features of different users become the major bottleneck for improving the performance. Different
users have unique features, even when they issue the same command [28, 48].

4.3.3 Warm Start Performance. The effectiveness of the FADA scheme is evaluated. Similar to the process
described in Sec. 4.3.2, but instead of directly testing the model with 2D motion profiles from a new user, we
apply FADA to transfer the knowledge obtained from the source domain (i.e., data from the 13 users) to the target
domain (i.e., data from the remaining user). Also, the average accuracy after repeating 14 times is reported. The
results are shown in Fig. 19(a). The x-axis represents the training data size in the source domain. “+0 target”
means no extra training data from the target domain is added, which is the same as the data plotted by the red
curve in Fig. 17. “+2”, “+6” and “+8 target” represent that 2, 6 and 8 samples, respectively, for each command
from the target domain are added for the training process of the FADA scheme.
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(a) FADA accuracy. (b) FADA v.s. Fine-Tuning.

Fig. 19. (a) The performance of the FADA scheme while varying the training data size from the source domain (520-5200)
and the target domain (+0, +2, +6, and +8). (b) Compare the performance of FADA and fine-tuning by incrementally adding
the training data from target domain (0 − 400). +0, +2, +6, and +8 target are equivalent to add 0, 40, 120 and 160 training
data size in target domain.

We can see that there is a significant improvement even if we collect 2 more samples per command from a
new user. The accuracy is improved by 33.61% and converges at about 75.6%. When we collect 8 more samples
per command from the new user, the accuracy converges at 87.47%, which is only 1.36% lower than that of the
source domain. The results suggest that FADA can effectively reduce the effort for a new user to use Endophasia.
The performance of FADA and fine-tuning is also compared and the results are shown in Fig. 19(b), where

the x-axis represents the training data size in target domain. We first train a CNN model by using all the 2D
motion profiles from the source domain. Then we apply FADA and fine-tuning by incrementally increasing 2D
motion profiles from the target domain, from 0 to 400. We can see that FADA converges faster and outperforms
fine-tuning by 3.8%-23.1% in cases of various training data sizes. FADA almost converges when the training data
size is larger than 200, while the accuracy of fine-tuning seems to keep increasing even beyond the 400 training
data size. Note that FADA outdistances fine-tuning when data size is extremely small, e.g., 40 and 80, due to the
benefits of implementing the idea of re-grouping the 2D motion profiles into pairs. On the one hand, it solves the
imbalance of samples between the source domain and the target domain. On the other hand, it increases the size
of training samples, because each 2D motion profile pair in the re-grouped dataset is distinct. The improvement
brought about by this benefit is more significant when the data size in the target domain is very small. It implies
that Endophasia significantly reduces the requirements of data size for a new user by adopting a well-designed
transfer learning scheme.

4.3.4 Online Learning Scheme Performance. After applying the FADA scheme, a customized model for a new
user can be initialized with little effort. To improve the performance of Endophasia with daily use, we adopt an
online learning scheme. The models obtained in Sec. 4.3.3 denoted by “+2 target” and “+8 target” with the source
domain training data size of 5200 are used to evaluate the performance of the online learning scheme. In this
case, 8 samples for each command in the target domain are used for the training of the FADA scheme. Therefore,
the remaining samples are considered as unlabeled 2D motion profiles. We vary the number of unlabeled 2D
motion profiles and apply the proposed online learning scheme to update the models iteratively. This process is
repeated 14 times and we report the average accuracy. Fig. 18 shows the results. The red curve plots data of the
average accuracy for the “+8 target” models. When we increase the unlabeled 2D motion profiles from 0 to 240,
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Fig. 20. The accuracy within various environments. Fig. 21. The performance of transferring a customizedmodel
to different phones. The x-axis represents the number of
training samples per command.

Fig. 22. The confusion matrix of the model trained with 8 labeled samples per command and 240 unlabeled data.

the accuracy increases by 4.39%. Similarly, for the “+2 target” models, the online learning scheme improves the
accuracy by 5.03% with 240 unlabeled 2D motion profiles.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 1, Article 37. Publication date: March 2020.



37:20 • Zhang et al.

Fig. 23. When the classifier is trained at a fixed angle, we
evaluate the accuracy at varying angles between the phone
and the user in the test dataset.

Fig. 24. When the classifier is trained at a fixed distance, we
evaluate the accuracy while varying distances between the
phone and the user in the test dataset.

Fig. 22 shows the confusion matrix of “+8 target” models, which are further improved by 240 unlabeled
2D motion profiles. We present the average accuracy among 14 users. The average accuracy is 92.5%. We can
observe that, among all the commands, “Help” is the most difficult to identify, but we still achieve 89.3% accuracy.
In addition, “Skype” is likely to be confused with “Skip” (5.8%) because these two commands have a similar
pronunciation, which results in similar facial movements.

4.4 Environmental Dynamics
In this section, we evaluate the impact of various environmental factors that show the robustness of our system.

4.4.1 Impact of Noise. We evaluate the robustness of Endophasia in noisy environments. We first conducted
experiments in controlled environments where users issue silent commands in i) a quiet room, ii) a room with
rock songs being played, and iii) a room with 5 people talking loudly. We then test Endophasia in uncontrolled
and noisy environments, including i) a classroom while a lecturer was teaching, ii) a shopping mall, iii) a subway,
and iv) a street. Fig. 20 shows the results. We can see that the accuracy remains similar in all environments
ranging from 86.3% to 94.1%. The results are expected because Endophasia operates at 17-23KHz band while
music, the human voice, and other audible sounds are usually below 10KHz [22]. The only exception is that the
accuracy in the subway is slightly lower (drops by 5.6%). This is likely due to the high frequency noise caused by
the friction between the train cars and the rails.

4.4.2 Impact of Angle. We evaluate the impact of the angles between the phone and the user’s mouth. In the
training data, we fix the angle to 0◦. While in the testing data, we vary the angle from −60◦ to 60◦. The results
are shown in Fig. 23. We can see that Endophasia’s performance vis-à-vis the angles. When the angle offset is
within 20◦, the accuracy remains above 73.3%.

4.4.3 Impact of Distance. We then evaluate the impact of the distances between the phone and the user’s mouth.
In the training data, we fix the distance to 3cm. While in the testing data, we vary the distance from 1cm to 5cm.
The results are shown in Fig. 24. We can see that when the distances in the training data and the testing data are
close (e.g., 2.5cm-3.5cm), the accuracy remains similar. However, when the distance offset becomes greater, the
accuracy drops significantly. When the distance offset is 1cm, the accuracy drops by 21.2%-22.53%.

Although the distance offset has a significant impact on the accuracy, we observed from extensive experiments
that users can quickly adapt and adjust the phone’s position. Specifically, we gave users an Android phone
with Endophasia installed. After issuing silent speech commands, Endophasia gives feedback with the detected
command in real-time. If users found the identified command is incorrect, they adjusted the phone position
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Fig. 25. Battery consumption and transferring data volume
comparison between Endophasia and camera-based solution,
e.g., Lip-Interact.
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Fig. 26. The impact of ambient light intensity on recognition
accuracy in 4 different scenarios.

the next time when they issued a command. After a 5-minute practice session, users can hold the phone at the
designated position every time.

4.4.4 Impact of Phones. To evaluate the impact of different devices, we train a model with the 2D motion profiles
collected by Pixel 3L and then test the model with another 2 different mobile phones (Huawei Nova3e and
Samsung S7). Because the location and type of mics and speakers on different phones vary, a model trained for
one phone may not be directly applicable to the other phone. Fortunately, the signals received by different phones
still share some similarities because they are produced by the same user whose face motion profiles remain
unchanged. Therefore, we can also apply FADA in the same manner to help the user to transfer the model from
one phone to another quickly. The results are shown in Fig. 21. It suggests that, for a registered user, he/she can
transfer the model trained using one phone to another by collecting 6 labeled samples per command to reach an
accuracy of 80%.

4.5 Compare with Camera-based Solution
We implement a camera-based solution with our command set, as described in Lip-Interact [46], achieving an
accuracy of 97.47%. We believe that our implementation is equivalent to Lip-Interact. Battery consumption and
accuracy in varying light intensity conditions are compared.

4.5.1 Battery Consumption. The data processing and inference are finished via a remote server for both En-
dophasia and Lip-Interact. Therefore we take the battery consumed by sensors (including CPU) and network
transmission into account and compare the data transfer volume of both methods. The experiment was con-
ducted on a Google Pixel 3L. We measure the battery consumption via Android Debug Bridge (ADB) wireless
debugging mode over WI-FI connection. We issue 100 commands within 10 minutes to measure the total battery
consumed by Endophasia and Lip-Interact. The results are shown in Fig. 25. For Endophasia, 35.82mAh battery is
consumed by mic and speaker. In the meantime, 47.15MB data is transferred. However, for Lip-Interact, a total
of 208.60mAh power is consumed by the camera, which is 5.82 times greater than the battery consumed by
Endophasia. Correspondingly, a total of 918.70MB of data is transferred by Lip-Interact, which is 19.48 times
greater than that of Endophasia.

4.5.2 Performance in Varying Light Conditions. One of the main advantages of acoustic methods is that it is
independent of light conditions, while a camera-based solution may be sensitive to the ambient light intensity.
Therefore, a camera-based solution may not maintain consistent performance in varying light conditions. To
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evaluate this, we measure the recognition accuracy of Endophasia and Lip-Interact in 4 scenarios with decreasing
ambient light intensities, as shown in Fig. 26. Scenario A is during a lecture in a classroom with adequate
supplementary lighting. Scenario B is watching a concert with relatively weak supplementary lighting from the
stage. Scenario C represents driving at night with little supplementary lighting along the street. Scenario D is in
an indoor environment at night with all lights off, except for the light from the phone’s screen. We issue the
20 commands 3 times per each and compute the average accuracy. Fig. 26 shows that the performance of the
camera-based solution decreases quickly with a decrease in light intensity, while the number of Endophasia
remains unaffected and shows promising results under all conditions.

5 DISCUSSION
Based on the evaluation results reported in the previous section, we have demonstrated the effectiveness of the
Endophasia system, which can correctly identify users’ silent speech commands in a contact-free way with their
mobile phones. Also, the command recognition algorithm of Endophasia can be used to complement existing
phone-based solutions or be integrated with wearables in commonly-used form factors to enable a wide spectrum
of applications. In this section, we outline potential application scenarios of Endophasia to enrich existing
interactions in the following directions, including (1) complementing with existing solutions and (2) integrating
with commonly-used wearables.

5.1 Complementing with Existing Solutions Recognizing Silent Speech Commands
The acoustic-imaging-based solution proposed in this paper transmits/receives acoustic signals in the frequency
inaudible to humans to enable silent speech command recognition, which facilitates users to issue the commands
without worrying about eavesdropping. This frequency band used by the speaker (or the microphone) to transmit
(or receive) is idle in voice applications of current COTS devices, e.g., smartphones. So, Endophasia offers good
extensibility to be implemented on these devices without affecting normal functionalities of the devices. Moreover,
based on the measurement results of power consumption in Section 4.5.1, Endophasia consumed an acceptable
amount of battery power when recognizing each command, which is 5.82 times less than that consumed by a
camera-based solution, i.e., Lip-Interact. These characteristics facilitate the Endophasia system to complement
existing silent speech recognition solutions in the following two ways.
First, we can introduce Endophasia to complement current solutions only when they could not perform well

under some challenging scenarios. Given the fact that each individual sensing algorithm cannot be 100% accurate,
existing solutions might fail to correctly differentiate commands when the sensors were confused by some
environmental noises, such as poor light conditions for camera sensors. When detecting the environmental
changes, the system can switch to the Endophasia recognition function so that users can still interact with the
system in an accurate and privacy-preserving way through silent speech commands. Moreover, the existing
solutions consumed more battery power, comparing with the Endophasia approach. When the power of the device
is going to run out, the users who have privacy concerns can save power by switching to use the Endophasia
recognition function. Second, Endophasia can be integrated with existing solutions to jointly generate inferences
to achieve better recognition results. Since the Endophasia recognition function consumed a small amount
of power, it could be used concurrently with a silent speech recognition algorithm to detect some keywords
which can be fed into the inference pipeline of that silent speech recognition solution for further improve the
performance of the whole system. In the future, we would explore a better complementary way to improve the
interaction of existing silent speech command recognition with the help of Endophasia.
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A 3D-printed box containing 
the main board

Acoustic capsule
(a) With a VR headset (b) With a Google Glass

Speaker

Mic

Fig. 27. The prototyped headset integrated with (a) a VR headset and (b) a Google glass. The main board placed (a) on
the VR headset or (b) behind the person’s neck is in a 3D-printed box. The acoustic capsule contains both a speaker and a
microphone to transmit the GMS signals and receive the acoustic signals reflected from the user’s face.

5.2 Integrating with Commonly-used Wearables
In this paper, we leveraged the prevalent mobile phones as an exemplar vehicle to realize the interaction of
issuing contact-free silent commands. However, people might not be able to use mobile phones to detect the
commands in some everyday application scenarios, e.g., when they do not carry their phones, or their hands are
occupied. Under these application scenarios, they might still wear devices, such as headset, glasses, and watches,
used in their daily lives. For example, when people drive their cars, they might wear their headset so that they can
answer the phone and talk on the headset. Moreover, the low level of battery power consumption, as described in
Section 4.5.1, made Endophasia be easily integrated into power-limited wearable devices. Therefore, enabling this
contact-free silent speech command recognition on everyday-use wearables would offer an alternative interface.

To demonstrate the feasibility of recognizing silent speech commands with modified everyday-use wearables,
we took the headset form factor which could be easily integrated into head-mounted devices used in AR/VR
scenarios (Figure 27(a)) and Google Glasses (Figure 27(b)) as examples. The goal of this prototype is to explore the
feasibility of enabling the silent speech command recognition in other everyday-use wearables. To prototype an
Endophasia-enabled headset as shown in Figure 27, we added in an extra low-cost speaker [12] into the acoustic
capsule, containing a microphone [13], positioned in a place near the user’s mouth. To control the microphone and
speaker in the acoustic capsule near the user’s mouth, a main board [49] equipped with an STM32 microcontroller
is placed in the 3D-printed box. The headset can emit the GSM acoustic signals through the speaker after users
initiate the command recognition function. When users want to issue a silent speech command, users wear the
device as the way they usually did. After issuing a command, the main board [49] samples the acoustic signals
sensed by the microphone with a DFSDM peripheral [45] and transmitted the sampled acoustic signals back to a
Notebook through a USB wire link so that the Notebook can analyze the received acoustic signals to generate
the corresponding acoustic images for recognizing the silent speech commands dropped by users. We tested
the Endophasia-enabled headset by asking a graduate student to issue 2 silent speech commands. The student
repeatedly issued each command for five times. The resulting acoustic images corresponding to those commands
issued by the student have similar patterns, which can be easily be recognized by the Endophasia algorithm as
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described in Section 3. In the future, we plan to redesign the circuit board to further shrink the size of the device,
e.g., the main board. Also, we plan to use the improved version of the headset device to collect more training and
testing samples and conduct a field study to verify the performance of this device when used in daily lives.

6 CONCLUSION
In this paper, we present Endophasia, a sensing technique enabling issuing contact-free silent speech commands
by utilizing acoustic-based face imaging. Endophasia perceives users’ facial movements by detecting the phase
change of acoustic signals and then it extracts users’ 2D motion profiles by deconstructing the received signal into
240 channel taps. As generating acoustic-based images requires only a speaker and a microphone, Endophasia
offers a non-invasive, power-efficient silent speech interface. Twenty silent speech commands were tested on an
Android mobile phone powered by Endophasia. To verify the feasibility of the proposed solution, we collected
data from 14 participants who tested the system using the 20 speech commands. Results from the 14 participants
show an 88.83% within-user accuracy. We adopted transfer learning techniques to reduce the effort to customize
the model for a new user. By collecting only 8 labeled samples per command, Endophasia achieves an average
accuracy of 87.47% for new users. In addition, we designed an online learning scheme to incrementally improve
the performance of a target user while the users use the system over time. With 240 unlabeled samples, our
online learning scheme further improves the accuracy to 92.5%.
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