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Abstract—Customer care calls serve as a direct channel for a
service provider to learn feedbacks from their customers. They
reveal details about the nature and impact of major events and
problems observed by customers. By analyzing the customer care
calls, a service provider can detect important events to speed up
problem resolution. However, automating event detection based
on customer care calls poses several significant challenges. First,
the relationship between customers’ calls and network events
is blurred because customers respond to an event in different
ways. Second, customer care calls can be labeled inconsistently
across agents and across call centers, and a given event naturally
give rise to calls spanning a number of categories. Third, many
important events cannot be detected by looking at calls in one
category. How to aggregate calls from different categories for
event detection is important but challenging. Lastly, customer
care call records have high dimensions (e.g., thousands of
categories in our dataset).

In this paper, we propose a systematic method for detecting
events in a major cellular network using customer care call
data. It consists of three main components: (i) using a regression
approach that exploits temporal stability and low-rank properties
to automatically learn the relationship between customer calls
and major events, (ii) reducing the number of unknowns by
clustering call categories and using L1 norm minimization
to identify important categories, and (iii) employing multiple
classifiers to enhance the robustness against noise and different
response time. For the detected events, we leverage Twitter social
media to summarize them and to locate the impacted regions.
We show the effectiveness of our approach using data from a
large cellular service provider in the US.

I. INTRODUCTION

Motivation: Customer care calls serve as a direct channel

for a service provider to learn feedbacks from their customers.

Customer care calls reveal important details about the nature,

impact, and solution of major events and problems. By analyz-

ing the customer care calls, the service provider can quickly

detect important events so that they can (i) start and prioritize

investigation of events to resolve the problems, (ii) deflect

some of future customer care calls to reduce call volume

by providing information about known events via alternative

channels (e.g., social media, web site, automated recorded

messages), (iii) better manage work force in customer call

centers to handle calls related to the detected events to reduce

the call handling time and improve customer support.

Challenges: Automatically detecting major events in a cel-

lular network using customer care calls poses the following

significant challenges:

• Customers respond to an event in different ways. Some

customers may not call at all, while others may call in

but at different time depending on their impact, availabil-

ity, and time-of-day. Therefore, the relationship between

customers’ calls and major events is blurred.

• Customer care call center records are labeled and input

into system manually by call agents. Call agents are

professionally trained to handle these customer calls, but

may still face challenges in categorizing a call, depending

on the information supplied by the customer, leading to

inconsistent classification across agents and across call

centers. Indeed a given event may naturally give rise

to calls spanning a number categories. For example, the

arrival of a new device may result in calls to pre-order, or

to activate a new service, or to activate a new device.

• Many important events cannot be detected by looking

at calls in one category. Aggregating calls from different

categories is often necessary for event detection. However,

the aggregation of categories should depend on the type

of events, and the relationship between the categories and

events also evolve over time as the call labeling process

changes. Therefore it is important to automatically learn

this relationship.

• There are a large number of possible categories by which

the calls may be labeled. For example, our data set has

170 level-1 categories, 765 level-2 categories, and 2882

level-3 categories. Learning from such a large dimension

of features is challenging.

Our approach: We first examine the problem by applying

statistical methods and show that they alone are insufficient.

Statistical techniques, such as EWMA, require a grouping

of categories a priori and cannot automatically detect the

grouping for a given type of events or anomalies, which we

use inter-changeably. Principal Component Analysis (PCA)

like approaches try to detect anomalies by projecting the

categories into a lower dimensional subspace. However, PCA

has several major weaknesses: (i) the orthogonal categories

identified by PCA may not be the most relevant categories

for the anomalies, (ii) PCA is sensitive to noise, and (iii) it

is hard to determine the number of dimensions [17], [9], [8].

In general, they are not effective in automatically learning the

relationship between anomalies and categories.

To address the issue, we develop a regression approach to

learn the relationship between categories and anomalies using

the training traces and use it to predict anomalies in the testing

traces. It can be viewed as an inference problem Ax = b,
where A represents the values of each categories, x denotes

the weight (importance value) of the corresponding categories,

and b is an indicator whether there is an anomaly. We find x
to satisfy Ax = b so that we can predict b in the future.

There are several significant challenges involved: (i) x may

change over time, (ii) we may not have enough constraints to

uniquely determine x, (iii) the extracted constraints may have

significant noise and the best fitting to the constraints may not

lead to accurate prediction for the future anomalies (i.e., over-

fitting), (iv) the problem size is large and grows over time.

We address these challenges by developing a systematic



approach consisting of three main components: (i) a regression

approach that leverages temporal stability and low rank prop-

erties of x, (ii) reducing the number of unknowns by clustering

categories and identifying important clustered categories using

L1 norm minimization, and (iii) using multiple classifiers to

enhance the robustness against noise and different customers’

response time.

Even an event is detected with customer calls, it is hard

to understand its nature and detailed impacted region because

the customer call categories only have limited text information

and the locations of calls can only be inferred by callers’ area

codes. To better understand the detected events, we leverage

Twitter social media as a complementary source. With the

augmented information from user feedbacks in Twitter, we

summarize the events and localize the impacted regions.

Our main contributions can be summarized as follows:

• Understand the limitations of existing approaches.

• Develop a systematic approach that can effectively handle

various practical issues, such as under-constraints linear

systems, over-fitting, scalability, and varying response

time.

• Evaluate the performance of our approach using the real

traces from a large cellular provider in the US, and show

the proposed approach can achieve 68% recall and 86%

accuracy. The accuracy is limited in part by the fact

that only a subset of data is available for our anomaly

detection, while the ground truth is derived from more

complete dataset. We expect the accuracy improves when

more complete data is available.

• Conduct a feasibility study with social media as a com-

plementary source to better understand the detected events.

II. PROBLEM FORMULATION

Background: This study uses data derived from operational

records of calls to customer support centers of a major

mobile service provider. We now outline how these records

are generated at the service center, and then describe a subset

of the records that are used for this study.

When a customer calls the customer support, the call will

first reach an Interactive Voice Response (IVR) system, an

automated system configured with pre-defined menu. Based on

the selected menu, the customer’s call is either self-served or

routed to one of the customer care call centers to be answered

by an agent. Work force management for customer call centers

are often performed according to the type of plan the customer

has (e.g., business or consumer, referred as “work group” in

the paper) and what type of issues the customer has (e.g.,

device, billing, performance issues).

Upon handling each customer care call, the call agent

will open a case in the ticketing system, and label the case

using a “three-level pre-defined categories” to indicate the

customer’s issue or need. Detailed notes are also input into

the system based on the conversation with the customer. After

the customer’s need is satisfied and case is resolved, a “call

resolution” code is also entered into the system. Although

the detailed notes may provide more detailed information and

help detect anomalies, they are used in this study due to the

privacy issues and the challenge of using natural language

to process them. Therefore, this paper focuses on using pre-

defined categories of the calls to detect anomalies.

Customer care calls dataset: The data set for this study

is derived from several million calls received at the service

centers in 5 months during 2011. Each record in the dataset

comprises the following subset of information related to a

call: work group, call resolution (as described above) and the

category ascribed to the call, comprising three levels customer

need: customer need level 1, customer need level 2, and

customer need level 3.

There are 141 work groups, 5394 call resolutions, 170

level-1 categories, 765 level-2 categories, and 2882 level-3

categories. Data do not contain any information concerning

calls that did not progress beyond the IVR system. Figure 1

shows the normalized call distribution in the most popular

10 categories among work group, call resolution and 3 levels

of customer need. We can observe that the top 10 categories

account for 30-70% of calls. Moreover, top 10% categories

account for 75-90% of calls. In spite of the significant amount

of calls in top 10% categories, we cannot simply use these

categories for anomaly detection because there are many

anomalies dominated by the remaining 90% categories. For

examples, “Technical” is a level-1 category which does not

belong to the top 10% categories but it is one of the dominant

factors in 73% of outage events observed from our dataset.

Real anomalies: In addition, we get ground truth from

National Call Center Operations (NCCO) reports, in which

anomalies are marked manually by monitoring the patterns of

customer calls, activity of the IVR system, and network traffic.

This process is extremely time-consuming and vulnerable to

human errors, which motivates us to develop an automatic

anomaly detector.

Table I shows an example of NCCO report. Each anomaly

in NCCO reports contains the following information: an event

status indicates the anomaly is first reported (initial), updated,

or resolved; a business unit and primary system indicate which

aspect of system is impacted by the anomaly; and a region

indicates the impacted region. A start time labels the time

when the anomaly is observed, and resolved time labels the

time when the support team reports that the anomaly has been

resolved. In this example, the anomaly is just reported, so the

resolved time is unknown. There is also a description of the

anomaly, e.g., outage events or performance degradation. We

designated the start time as the time at which an anomaly is

detected. There could be a gap between the time that anomalies

are observed in NCCO report and perceived by customers.

Since our approach uses only customer calls data to detect

anomalies while the ground truth from NCCO reports is

derived based on the more complete information (e.g., activity

of the IVR system and network traffic), we do not expect our

approach can detect all anomalies.
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(c) Level-1 (170 categories)
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(d) Level-2 (765 categories)
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Fig. 1. The normalized number of calls in the most popular 10 categories among work group, call resolution and 3 levels of customer need.

Event Status: Initial
Business Unit(s): Mobility
Primary System: Mobility: GSM Voice Networks
Region: North East
Start Time: month day year - time
Resolved Time: Unknown
Issue Description: Boston customers may experience no service or
degraded service in the coverage area of the cell sites affected.

TABLE I
AN EXAMPLE OF NCCO REPORT

Issues: The call records give us information about calls in dif-

ferent categories with different metrics. Each category/metric

gives us one timeseries. Our goal is to automatically detect

anomalies or events using all the timeseries. A natural ap-

proach is to detect sudden changes in one or more timeseries.

But finding an appropriate aggregation of the timeseries for

accurate anomaly detection is challenging.

Simply aggregating all of them does not work well. Figure 2

show two examples. In the first example, there were 3 major

events related to a release of new devices: new device an-

nouncement, new device pre-order, and new device available.

If we consider all the customer care calls that are related to

a new device, we can see clearly there are 3 spikes in the

call volume corresponding to the above events. However, the

events have little impact on the total call volume, and are

difficult to detect using the total call volume. In the second

example, 3G network outage occurred in South Florida on the

second day of the third week. The anomaly can be detected

using the weighted sum of call volume from categories “Tech-

nical”, “Cannot Make or Receive Calls”, “Voice”, and “FLP”

(Florida/Puerto Rico area), but not from the total call volume.

Simply aggregating all calls is insufficient because (i) some

events only have impact on a subset of customers and do not

lead to significant changes in total volume, and (ii) even for

the events that may potentially affect the total volume, the

capacity of call centers limits the increase in total volume and

makes it difficult to detect. Ideally in this case, we want to

detect events before the capacity limit is reached so that we

can increase call center capacity temporarily in response to

the increased demand.

Another natural approach to detect anomalies is to use PCA.

For example, [6] decomposes data into normal and abnormal

subspaces using PCA by (i) applying PCA to the testing

dataset and examining the projection of testing dataset on

each principal axis in order, (ii) assigning the principal axis

and all subsequent axes to anomalous subspace as soon as a

projection is found to exceed a threshold (e.g., 2x standard

deviation from mean), and (iii) detecting spikes in the time

series projected onto the anomalous subspace. We observe its

precision (i.e., fraction of predicted anomalies that are correct)

is not much better than that of a random algorithm, which

reports an anomaly by tossing a bias coin of 0.3 (i.e., close

to the fraction of time that has anomalies.) PCA performs

poorly for several reasons. First, large anomalies can pollute

the normal subspace [17] so PCA usually requires anomaly-

free data for training [5]. This could be a problem for our

dataset because there are average 1.8 anomalies per week in

NCCO reports and it is hard to find a clean period for training.

Second, determining the threshold for anomalous subspace is

an open question [17], [8], [6]. Third, PCA is sensitive to

noise, which is common in the customer care call dataset.

In general, the appropriate aggregation depends on the types

of events. Due to a large number of possible types of events

and evolving nature of events, it is infeasible to manually
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Fig. 2. The total call volume is insufficient to detect events.

determine the aggregation for each event type in advance. The

above results call for a new method to automatically learn the

mapping from the various input metrics to anomalies. The

method should be (i) adaptive to new call labels and events,

(ii) highly robust against noise, which is inherent in call data

records due to different customers’ responses to anomalies and

inconsistent call labelings.

III. OUR APPROACH

A. Problem Formulation

Our main problem can be formulated as follow. We have

training and testing traces, where the training traces contain N -

dimension input timeseries and the ground-truth about when

anomalies take place and the testing traces contain new N -

dimension input timeseries. Our goal is to determine when

anomalies occur in the testing traces.

We use regression to approach the problem by casting it

as an inference problem of Ax = b, where A(t, i) denotes

the number of calls of category i at time t, x(i) denotes

the weight (importance value) of the i-th category, b(t) is

an indicator whether there is an anomaly. We construct A
and b from the training traces to solve for x. Then we

plug in the estimated x and construct A from the testing

traces to predict b for the testing trace. Essentially we view

there exists a linear relationship between the categories values

and the resulting anomalies, and we try to learn the linear

coefficients x that automatically combines different metrics

to predict the anomalies. As we will show in Section IV, a

simple linear regression model works well, so we believe the

linear assumption is reasonable. There are several significant

challenges involved in realizing this scheme.

1. Dynamic x: As the categories and events evolve, the

relationship between the inputs and the anomalies may also

change. Therefore x can change over time.

2. Under-constraints: The number of categories can be much

larger than the number of constraints derived from the

training traces. So we have an under-constrained problem

and there are an infinite number of solutions. Randomly

picking one of them gives an equally good fit to the

training data, but can give very different accuracy for

the testing data. Our ultimate goal is to find x that can

accurately predict the anomalies for the testing traces.

3. Over-fitting: Even if we are fortunate to get long enough

training traces so that the number of categories is close

to or smaller than the number of constraints, the weight

estimation is still challenging because the solution that

minimizes the fitting error based on the training traces is

often not the one that gives the closest fit to the testing

data. In other words, there can be over-fitting issues.

4. Scalability: There are thousands of categories or dimen-

sions and thousands of time intervals. The scalability

issue further exacerbates when we allow x to change. For

example, if there are K different x’s, the problem size

further grows by a factor of K .

5. Varying customer response time: When an anomaly occurs,

customers respond to it at different time depending on the

impact of anomaly, the customers’ own availability, time of

day, and day of week. This blurs the relationship between

A and b.

Below we first develop an approach to address the under-

constraints and over-fitting issues while allowing x to change

over time (Section III-B). Then we reduce the number of

unknowns as well as handle the scalability issues by cluster-

ing categories and identifying important clustered categories

(Section III-C). Finally, we use multiple classifiers to enhance

the robustness against noise and different customers’ response

time (Section III-D).

B. Our Regression

To address the first challenge, we generalize our formulation

to Adxd = bd, where d denotes d-th day, Ad(t, i) denote the

value of i-th category from the traces at time t on the d-th
day, xd(i) denote the weight of i-th variable on the d-th day,

bd(t) denote whether there is an anomaly at time t on the d-th
day, where 1 means anomaly and 0 means no anomaly.

To address the under-constraints and over-fitting issues,

we cannot simply minimize the fitting error to the training

data. Instead, we also impose additional structures on the

solution. First, we expect the weight values xd to be stable

across consecutive days d. Second, we expect x = [x1x2...xd]
exhibits low-rank structure due to the temporal stability in

x and the small number of dominant factors that cause the

anomalies. Therefore, we try to find X , U , V that minimize

the combined objective:

o(X, U, V ) =
∑

d

f(X) + α · g(X) + β · h(X, U, V ), (1)



where f(X) is the fitting error, g(X) captures the degree

of temporal stability, and h(X, U, V ) captures the error in

approximating X as a product of two rank r matrices: U
and V , where α and β give the relative weights of temporal

stability and low-rank constraints, respectively, and r is the

desired low rank. Next we elaborate on each term and how to

select weights.

Fitting error: The fitting error is expressed as f(X) =
∑

d ‖Adxd − bd‖
2

F where ‖ · ‖F is the Frobenius norm (with

‖Z‖F =
√

∑

ij Z(i, j)2 for any matrix Z .)

Incorporating temporal stability: To capture the temporal

stability, we introduce a temporal transformation matrix T and

define a penalty function as follows:

g(X)
△

=
∥

∥M ∗ T T
∥

∥

2

F
, (2)

where M = [x1x2...xd] merges all the column vectors into
a matrix and T T is the transpose of T . As in [29], we use a
simple temporal transformation matrix to minimize the change
in x between two consecutive days: T = Toeplitz(0, 1,−1),
which denotes the Toeplitz matrix with central diagonal given
by 1, the first upper diagonal given by -1. That is,

T =

2
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Incorporating low-rank constraints: Finally, to capture the

low-rank nature of weight matrix, we introduce a penalty term

function

h(X, U, V )
△

=
∥

∥M − U ∗ V T
∥

∥

2

F
(4)

where M = [x1x2...xd], U is a N × r unknown factor matrix,

and V is a d× r unknown factor matrix, and r is the desired

low rank. Minimizing the penalty term ensures M has a good

rank-r approximation: M ≈ U ∗ V T .

Selecting parameters: To decide the weights α and β,
we use 6-week data as the training set to find the best

weights (in terms of evaluation metrics discussed in Section

IV) as follow. First, α and β are chosen to make fitting

error, temporal stability, and low-rank constraint have similar

order of magnitude. Second, we fix α, and keep increasing or

decreasing β by a factor of 10 each time until the performance

does not improve. β is updated as the one that gives the best

performance seen so far. Third, similar to the second step, but

this time we fix β and alter α. The second and third steps

are repeated until the performance does not improve for the

training traces. It usually takes 5 or fewer iterations. Then we

apply the selected parameters to the testing trace for anomaly

detection.

C. Reducing Categories

The regression problem described in Section III-B has

thousands of variables for each day alone and the number

further increases with the number of days. This imposes both

scalability issue and exacerbates under-constraint issue.
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1) Clustering Categories: To enhance scalability and min-

imize the impact of ambiguity and inconsistency in detecting

events based on the customer needs categories, we need to

cluster relevant categories in advance. It is infeasible to group

categories manually because (i) the number of categories

changes over time. Categories can be added or depreciated

because of the emerging or ending of services/products; (ii)

each customer care center can change the usage of categories;

and (iii) there are too many categories.

One natural approach is to cluster categories base on the

similarity between timeseries. However, the approach does not

work. For example, Figure 3 shows timeseries of different

categories. We can see that the call volume of category “Plans

and Features” increases significantly while that of the other

category “Plan” decreases on the same day, because the agents

are asked to switch to use “Plans and Features” instead of

“Plan”. Similarly, we can see the call volume of “Device”

decreases while that of “Account” and “Equipment” increases.

Although these categories represent the same group of calls,

their timeseries are not similar.

We cluster categories based on the similarity of their textual

names since agents usually classify calls based on the textual

names of categories and different agents may classify similar

calls to different categories with similar texts. We treat each

category name as a sequence of characters and adopt the Dice’s

coefficient [26] using bigram model [25], which is widely used

in statistical natural language processing to measure string

similarity. The Dice’s coefficient s for two string x and y
using the bigram model is computed as s = 2×nt

nx+ny
, where

nt is the number of character the bigrams in both strings,



nx and ny are the numbers of big-rams in strings x and y,
respectively. The value of s ranges between 0 and 1. A larger

s indicates the two strings are more similar. For example, to

calculate the similarity between strings “paid” and “payment”,

we find the sets of the bigrams as (“pa”, “ai”, “id”) and

(“pa”, “ay”, “ym”, “me”, “en”, “nt”). These sets have 3 and

6 elements, while only 1 element is common. So we have

s = (2 × 1)/(3 + 6) = 0.22. By using a threshold of 0.3

for s, we cluster the customer categories into 96 at the first

level, 354 at the second level, and 1165 at the third level. Our

evaluate uses these newly computed categories.

2) Identifying Important Categories: Even after clustering,

there are still a large number of clustered categories. We use

the following three schemes to identify important categories.

Principal component analysis (PCA): PCA can also be used

to identify important categories because it reduces dimension-

ality of a multivariate dataset by converting possibly correlated

variables into linearly uncorrelated variables, which are called

principal components. However, using PCA in this context

has the same problem as it is used for anomaly detection

mentioned in Section II. As a result, principal components

may not identify the most important categories for anomaly

detection. For example, the 3G network outage event shown

in Figure 2 is dominated by categories “Technical”, “Cannot

Make or Receive Calls”, “Voice”, and “FLP”. However, the

PCA results show that in the top 10% principal components,

the coefficients of “Cannot Make or Receive Calls” and

“Voice” are small, which indicates they are not considered

as important categories in PCA.

L2 norm minimization: Another way of finding important

categories is to cast it as an inference problem Ax = b,
where A(t, i) denotes the value of category i at time t, x(i)
denotes the weight (importance value) of the i-th category,

b(t) is an indicator whether there is an anomaly. Different

from Section III-B, here we just need to filter out unimportant

categories instead of determining the precise weights. So here

we assume x is constant over time to have fewer unknowns.

We obtain A and b learned from the previous traces. Then

we estimate x to best fit the relationship. A common metric

for the best fit is L2 norm minimization, defined as follows:

min
x

‖b − Ax‖2
2 + λ2‖x‖2

2, (5)

where ‖x‖2 =
√

∑

k=1..n ‖xk‖2. It can be efficiently solved

using a standard solver for linear least-squares problems.

Then we filter out the categories whose weight x is within

a threshold, which is set to 0 in our evaluation.

L1 norm minimization: Another approach is to use L1 norm

minimization, defined as follow:

min
x

‖b − Ax‖2
2 + λ2‖x‖1. (6)

where ‖x‖1 =
∑

k=1..n ‖xk‖. L1 norm minimization is often

used in situations where x is sparse, i.e., x has only very

few large elements and the other elements are all close to 0.
This is well suited to our goal of identifying a small number

of important factors. As shown in [2], the minimal L1 norm

solution often coincides with the sparsest solution for under-

determined linear systems. As we will show in Section IV,

L1 norm minimization performs the best since it explicitly

maximizes sparsity. As before, we filter out the categories

whose weight x is within a threshold, which is set to 0 in

our evaluation.

D. Combining Multiple Classifiers

Need for multiple classifiers: Another important problem is

what time scale we should use for anomaly detection. Ideally,

we would like to capture all calls triggered by the same

anomaly when learning the weight of the metrics. That is,

A should include the characteristics of all calls corresponding

to that anomaly. However, customers do not respond to an

anomaly immediately and sometimes their response time may

differ by hours. But simply using a large time window is not

a good option since we can no longer detect anomalies in a

fine time granularity.

To address both issues, we use a reasonably small bin size: 1

hour, but include calls made in previous n and next m hours

as additional features. That is, we use Ad(t − m, t − (m −
1), ..., t− 1, t, t+ 1, ..., t +n), which denotes the values of N
categories in the traces from time t−m to time t+n. So there

are altogether (m + n + 1)×N features and xd also now has

(m+n+1)×N elements, which are the weights of all these

features. bd(t) remains the same as before (i.e., whether there

is an anomaly at time t).
However it is challenging to select m and n a priori. One

set of values may work well on some data but not on others.

Therefore we use multiple classifiers, where each classifier

uses one set of m and n, and then we aggregate the results of

all the classifiers. The intuition is that it is more likely to be

a real anomaly if lots of classifiers claim so.

Aggregating multiple classifiers: We apply each classifier

independently to the testing data and returns a binary time-

series pb(c, t). pb(c, t) = 1 denotes that there is an anomaly

detected by classifier c at time t. pb(c, t) = 0 denotes there

is no anomaly detected. We aggregate pb(c, t) by assigning

a weight wc to each classifier. We detect an anomaly when
∑

c wcpb(c, t) > threshold. Our evaluation uses a threshold

of 0.3.

We calculate wc for a classifier c by applying 2-fold cross-

validation to the training data. The 2-fold cross-validation

partitions the training data into two parts. In the first round,

it uses the first partition for training and the second partition

for testing. Since we know the ground truth in all training

data, we can evaluate how the classifier performs in cross-

validation by calculating the accuracy (i.e., the fraction of

correct prediction) in the second partition. Similarly, in the

second round, we use the second partition of the training data

for training, use the first partition for testing, and calculate

the accuracy in the first partition. Therefore, with the 2-fold

cross-validation we can get an average accuracy ac in training

set which gives us an estimate how the classifier may perform.



Then the weight of each classifier is assigned as the normalized

accuracy: wc = ac/
∑

c ac.

IV. EVALUATION

We use the following metrics to quantify the accuracy:

recall =
tp

tp + fn
(7)

precision =
tp

tp + fp
(8)

where tp is the number of true positives (i.e., correctly

detected anomalies), fp is the number of false positives (i.e.,

incorrectly detected anomalies), and fn is the number of false

negatives (i.e., missed anomalies). In addition, we integrate

precision and recall into a single metric called F-score [27],

which is the harmonic mean of precision and recall: F-score

= 2

1/precision+1/recall . For all three metrics, larger values

indicate higher accuracy. Unless otherwise specified, we use

30 classifiers.

Identification of important features: We first evaluate how

different feature selection algorithms impact the performance.

We vary the methods of identifying important categories

while using multiple classifiers and temporal/low-rank based

regression. We compare PCA, L1 norm minimization, L2

norm minimization, and random selection (e.g., Rand 1000

and Rand 2000 randomly select 1000 and 2000 categories).

L1 norm selects 612 important categories and L2 norm selects

980 important categories. As shown in Figure 4, L1 norm

consistently performs the best. It out-performs L2 norm by

23%, PCA by 45%, Rand 2000 by 454% in terms of precision;

out-performs L2 norm by 10%, PCA by 32%, and Rand 2000

by 1020% in terms of recall. Rand 1000 selects too few

categories and yields close to 0 precision and recall, so its

bars are almost invisible from the figure.

Varying regression methods: Next we evaluate the impact

of regression methods. We use L1 norm minimization to select

important categories and use multiple classifiers in all cases.

We compare regression (i) that only uses fitting error as

the objective (Fit), (ii) that uses fitting error and low rank

(Fit+LR), (iii) that uses fitting error and temporal stability

(Fit+Temp), (iv) that uses fitting error, temporal stability, and

low rank (Fit+Temp+LR). In addition, as a baseline, we use

random selection (Rand 0.3) that randomly determines if a

given interval has an anomaly with a probability of 0.3 since

around 30% of time intervals have anomalies. As shown in

Figure 5, Fit+Temp+LR yields the highest accuracy: it out-

performs Random, Fit, Fit+LR, Fit+Temp by 823%, 64%,

32%, 6%, respectively, in terms of F-score.

Using multiple classifiers: We evaluate how the number of

classifiers affects the performance. As shown in Fig. 6, lever-

aging more classifiers can generally improves the accuracy,

as we would expect. The improvement increases significantly

initially and then tapers off. Since the computation cost

increases with the number of classifiers, we use 30 classifiers

as the default to trade off the benefit and cost.
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Fig. 7. Varying the size of training set.

Varying the sizes of training sets: We use the previous

n days as the training set and detect anomalies on the next

day. As shown in Figure 7, when n increases from 7 days to

42 days, the recall increases from 46% to 79%, but when

n increases from 42 days to 63 days, the recall drops to

51%. Similarly, when n increases from 7 days to 21 days, the

precision increases from 44% to 61%, but a further increase

in n to 63-day reduces the precision to 32%. It is because

when training set is larger, we have more constraints to find

a better solution for Eq. 1 and therefore a higher accuracy.

However, as the training set further increases and includes

older dataset, the performance may degrade due to the evolving

nature of the dataset. We plan to place higher weights to the

constraints learned from more recent dataset to further improve

the accuracy and robustness in the future.

Varying ratios of weight: Let x(i, t) denote the weight

(importance value) of the i-th category at time t. The change

ratio of weight is
∑

t

∑

i(x(i, t)−x(i, t−1))/x(i, t−1) when
x(i, t−1) is not 0. We see 84% of the changes is within 10%,

and 2.5% of the changes is larger than 100%. This suggests

x has significant temporal stability, but it can also adapt to

different values in order to detect different types of anomalies

across two consecutive days.

V. EXTERNAL DATA: SOCIAL MEDIA

So far, we focus on event detection using the call records,

which are the direct feedbacks from customers. However, it is

hard to understand the nature of detected events from customer

calls due to the following reasons: (i) Categories from call

records only have limited text information to describe the

issues behind the calls. (ii) Locations of the called customers

can be inferred by the area codes of their phone numbers.

However, the coverage of each area code is not uniform.

Moreover, the customers may use the area codes from their

previous locations.

Benefits of using Twitter: To better understand the detected

events, we leverage Twitter social media as an indirect channel

to understand customers’ experience of the service. There

are mainly three reasons that make Twitter social media an

attractive data source. First, Twitter data is massive; as of

March 2012, Twitter has 500 million registered users [24].

Many people share their experiences of the services and

products they are using. Second, user feedbacks are coming

in near real-time. Compared with the efforts to report issues
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through customer calls, it is much easier to express their

experiences through tweets. Third, tweets may have richer

context information than customer calls. They have many

features which help to understand the various events.

Data description: Twitter data comes with a variety of

features, which will help us to understand the nature of

detected events. We use the following features of tweets:

• Timestamp;

• Text of original tweets

• Text of normalized tweets, which are the tweets converted

into a standard format to ease processing;

• Username: a tweet’s author;

• Twitter specific features: URLs, retweets (RT), #hashtags

used to mark keywords or topics in a tweet, and @men-

tions, which are the tweets containing “@username”

anywhere in the text;

• Location (city, state, latitude, longitude): Locations can

come from the tweets themselves or Foursquare [3].

Understanding detected events: Once the anomalies are

detected, we can leverage various features of tweets, such

as keywords and locations, to summarize events as follow.

We first find tweets that are related to customers experience

by selecting tweets with hashtag #XXXFAIL or #XXXSUCK

during the entire period, where XXX denotes the name of

the provider. Then we try to identify important keywords that

appear in the anomaly period. We use the metric, called Term

Frequency - Inverse Document Frequency (TF-IDF) [22], to

quantify the importance of a keyword. TF-IDF is defined as

the number of occurrences of word-level 1-grams and 2-grams

during the period of the anomaly (in the selected tweets)

divided by the number of occurrences in the entire period

(in the selected tweets). The intuition is that a keyword that

appears frequently only in the anomaly period but not univer-

sally frequently is important. Table II shows some examples

of events summarized using this approach.

To locate the impacted regions of the given anomaly, we

gather the authors of the collected tweets, which contains n-

grams with high TF-IDF scores during the time frame. Then

we check the locations of the authors to get the impacted

regions. Figure 8 shows an example of the tweet locations for

the anomaly occurred at Miami, FL. Although some users may

tweet about network incidents from other locations, as long as

Fig. 8. Tweet locations of an detected event. Most tweets are located around
Miami, Florida.

we see multiple tweets in a region, we can correctly locate the

anomaly.

VI. RELATED WORK

Network diagnosis: There has been significant work on

anomaly detection and network diagnosis. PCA (e.g., [4], [6],

[7]) has been widely used for anomaly detection. [17] shows

that PCA is sensitive to how many principal components are

used. [18] shows that data poisoning can significantly degrade

the performance of PCA. Barford et al. [1] uses wavelets to de-

compose an original signal into low-, mid-, and high-frequency

components and then detect anomalies based on the high-

frequency components. Zhang et al. [29] uses compressive

sensing to discover anomalies in traffic matrices. [28] develops

a framework to capture a range of detectors. [10] proposes

a multi-scale robust subspace algorithm to identify changes

in performance even when the baseline is contaminated. [21]

uses ridge regression to learn Quality of Experience (QoE)

in large-scale IPTV systems. Ridge regression does not work

well in our context due to possible under-constraint issues and

varying customers’ response time. NICE [13] uses statistical

correlation to detect chronic network problems. Mercury [12]

detects persistent behavior changes using the time-alignment

for distributed triggers. [11] combines different anomaly de-

tection methods, such as EWMA, FFT, Holt-Winters, and

Wavelets, to boost the performance.

The statistical and multi-scale analysis used in the previous

works are complementary to our work. We complement the

previous works by using L1 minimization to select important

metrics, leveraging temporal stability and low rank to enhance



Event Location Event summary by TF-IDF

3G network outage New York, NY service, outage, nyc, calls, ny, morning, service

outage due to an earthquake East Coast #earthquake, working, wireless, service, nyc, apparently, new, york

3G network outage Miami, FL outage, south, service, issue, broward (a county in FL), key, west, equipment, Florida

Internet service outage Bay Area serviceU, bay, outage, service, Internet, area, support, #fail

New device release Nationwide iphone, sprint, verizon, apple, 4s, android, accessibility

New device release Nationwide 4s, apple, iphone, #iphone4s, pre-order, order, site, #apple, store

TABLE II
EXAMPLES OF DETECTED ANOMALIES WITH THE SUMMARY. THEY ARE CONFIRMED BY THE NCCO REPORTS (THE DATE AND TIME OF EVENTS ARE

NOT SHOWN DUE TO PROPRIETARY ISSUE.)

the accuracy of regression, and applying multiple classifiers to

enhance robustness. These techniques can be potentially useful

to other network diagnosis problems.

Event detection using Twitter: Twitter has been extensively

studied to detect various events such as service issues [16],

[14], earthquakes [20], stock markets [19], elections [23], and

public health issues [15]. [16] shows the feasibility of social

media to understand user experiences and finds correlation

between tweets and customer tickets. [14] detects outages of

popular services (e.g., Gmail, Bing, PayPal) by tracking the

volumes of tweets with the phrase “X is down” or the hashtag

“Xfail”. Our work takes a step further to summarize the events

and localize the impacted regions using detailed information

from tweets.

VII. CONCLUSION

We develop a systematic method to automatically detect

anomalies in a cellular network using the customer care call

data. Our approach scales to a large number of features in

the data and is robust to noise. Using evaluation based on the

call records collected from a large cellular provider in US,

we show that our method can achieve 68% recall and 86%

accuracy, much better than the existing schemes. Moreover,

we show that social media can be used as a complementary

source to get higher confidence on the detected anomalies and

to summarize the user feedbacks to anomalies with text and

location information.
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