Event Detection using Customer Care Calls

Yi-Chao Chen¹, Gene Moo Lee¹, Nick Duffield², Lili Qiu¹, Jia Wang² The University of Texas at Austin¹, AT&T Labs – Research²

Motivation

Customer care call is a direct channel between service provider and customers

Reveal problems observed by customers

Understand impact of network events on customer perceived performance

Regions, group of users, services, ...

Motivation

Service providers have strong motivation to understand customer care calls

- **Reduce cost:** ~\$10 per call
- Prioritize and handle anomalies by the impact
- Improve customers' impression to the service provider

Problem Formulation

🗆 Goal

Automatically detect anomalies using customer care calls.

Input

- Customer care calls
- Call agents label calls using predefined categories
 ~10,000 categroies
- A call is labeled with multiple categories

Issue, customer need, call type, problem resolution

Problem Formulation

Output

Anomalies

- Performance problems observed by customers
- e.g. Service outage due to DOS attack, power outage, low bandwidth due to maintenance

Example: Categories of Customer Care Calls

- -Equipment
- -Call Disconnected
- -Cannot make calls
- -Educated How to use
- -Equipment inquiry
- -Feature
- -Service Plan

Input: Customer Care Calls

of calls of category n in time bin t

Example: Anomaly

Output: anomaly indicator =
[000100001110000001000000000]

INFOCOM 2013

Challenges

Customers respond to an anomaly in different ways.

Events may not be detectable by a single category.

Challenges

Customers respond to an anomaly in different ways.

Events may not be detectable by a single category.

Challenges

Customers respond to an anomaly in different ways.

- Events may not be detectable by a single category.
- There are thousands of categories.

Our Approach

We use regression to approach the problem by casting it as an inference problem:

$$Ax = b$$

A(t,n): # calls of category n at time t

x(n): weight of the n-th category

b(t): **anomaly** indicator at time t

Our Approach

- Training set: the history data
 - A: Input timeseries of customer care calls
 - b: Ground-truth of when anomalies take place
 - x: The weight to learn

$$Ax = b$$

- Testing set:
 - A': The latest customer care call timeseries
 - x: The weight learning from training set
 - b': The anomaly to detect

$$A'x = b'$$

Issues

Dynamic *x*

The relationship between customer care calls and anomalies may change.

Under-constraints

categories can be larger than # training traces

Over-fitting

The weights begin to memorize training data rather than learning the generic trend

Scalability

There are thousands of categories and thousands of time intervals.

Varying customer response time

System Overview

Clustering

- Agents usually classify calls based on the textual names of categories.
 - e.g. "Equipment", "Equipment problem", and "Troubleshooting- Equipment"
- Cluster categories based on the similarity of their textual names
 - Dice's coefficient

Identify Important Categories

L₁-norm regularization

- Penalize all factors in x equally and make x sparse
- Select categories with corresponding value in x is not 0

$$\min_{x} \|Ax - b\|_{2}^{2} + \lambda \|x\|_{1}$$

- Impose additional structures for under-constraints and over-fitting
 - The weight values are stable
 - Small number of factors of dominate anomalies

Fitting Error

$$f(X) = \sum_{d} \|A_{d}x_{d} - b_{d}\|_{2}^{2}$$

Reducing Categories Clustering Identifying important categories Regression Temporal Low-rank stability structure Combining multiple

classifiers

Temporal stability

The weight values are stable across consecutive days.

$$g(X) = \left\| X \times T^T \right\|_2^2$$
$$X = \begin{bmatrix} x_1 x_2 \dots x_d \end{bmatrix}$$
$$T = \begin{bmatrix} 1 & -1 & 0 & \dots \\ 0 & 1 & -1 & \ddots \\ 0 & 0 & 1 & -1 \\ \vdots & \ddots & \ddots & \ddots \end{bmatrix}$$

Reducing Categories

٠.

Low-rank structure

The weight values exhibit lowrank structure due to the temporal stability and the small number of dominant factors that cause the anomalies.

$$h(X, U, V) = \left\| X - U \times V^T \right\|_2^2$$
$$X \approx U \times V^T$$

Find the weight X that minimize:

$$o(X, U, V) = f(X) + \alpha \cdot g(X) + \beta \cdot h(X, U, V)$$

f(X): Fitting error

g(X): Temporal stability

h(X,U,V): Low-rank

Reducing Categories Clustering Identifying important

Combining Multiple Classifiers

What time scale should be used?

- Customers do not respond to an anomaly immediately
- The response time may differ by hours
- Include calls made in previous
 n (1~5) and next m (0~6)
 hours as additional features.

Evaluation

Dataset

- Customer care calls: data from a large network service provider in the US during Aug. 2010~ July 2011
- Ground-truth anomalies: all anomalies reported by Call Centers, Network Operation Centers, and etc.

Metrics

- Precision: the fraction of claimed anomalies which are real anomalies
- Recall: the fraction of real anomalies are claimed
- **F-score:** the harmonic mean of precision and recall

precision

Evaluation –

Identifying Important Features

Evaluation – Identifying Important Features

Evaluation – Identifying Important Features

Evaluation – Identifying Important Features

Evaluation – Regression

Evaluation – Regression

Evaluation – Regression

Contributions

- Propose to use customer care calls as a complementary source to network metrics.
 - A direct measurement of QoE perceived by customers
- Develop a systematic method to automatically detect events using customer care calls.
 - Scale to a large number of features
 - Robust to the noise

Thank You!

yichao@cs.utexas.edu

IEEE INFOCOM 2013

INFOCOM 2013

Twitter

Leverage Twitter as external data

- Additional features
- Interpreting detected anomalies

Information from a tweet

- Timestamp
- Text

Term Frequency - Inverse Document Frequency (TF-IDF)

- Hashtags: keyword of the topics
 - Used as features
 - e.g. #ATTFAIL

Location

Interpreting Anomaly - Location

INFOCOM 2013

Describing the Anomaly

Examples

- 3G network outage
 - Location: New York, NY
 - Event Summary: service, outage, nyc, calls, ny, morning, service
- Outage due to an earthquake
 - Location: East Coast
 - Event Summary: #earthquake, working, wireless, service, nyc, apparently, new, york
- Internet service outage
 - Location: Bay Area
 - Event Summary: serviceU, bay, outage, service, Internet, area, support, #fail

How to Select Parameters

□ K-fold cross-validation

- Partition the training data into K equal size parts.
- In round i, use the partition i for training and the remaining k-1 partitions for testing.
 - The process is repeated k times.
- Average k results as the evaluation of the selected value