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Motivation

1 Customer care call is a direct channel between
service provider and customers

Reveal problems observed by customers

Understand impact of network events on customer
perceived performance i”H'

m Regions, group of users, services, ... ._.e.\l
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Motivation

Service providers have strong motivation to
understand customer care calls

Reduce cost: ~$10 per call
Prioritize and handle anomalies by the impact

Improve customers’ impression to the service

orovider [$ $ $
5185,
‘ J




Problem Formulation

Goal

Automatically detect anomalies using customer
care calls.

Input
Customer care calls

Call agents label calls using predefined categories
~10,000 categroies

A call is labeled with multiple categories

Issue, customer need, call type, problem resolution
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Problem Formulation

Ovtput
Anomalies
Performance problems observed by customers

e.g. Service outage due to DOS attack, power
outage, low bandwidth due to maintenance
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Example: Categories of Customer

Care Calls
I

—Equipment

Call Disconnected
—Cannot make calls
—Educated - How to use
—=Equipment inquiry
-—Feature

—=Service Plan



Input: Customer Care Calls

T, T, T, ... T
Categories; | 82534 76462 71950 ... 25290

Clategoriesy |126913 112925 96535 ... 92442
Categoriess | 64997 58767 52807 ... 48270

Categoriesy | 84909 79901 79671 ... 76100

{# of calls of category n in time bin t}
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Example: Anomaly

Service outage Low bandwidth
due to DOS attack Power outage due to maintenance

T T T T S S S S RN
NN AN NN I S A Vol | B VR

Output: anomaly indicator =
[0001000001T171T0000001000000000007]
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Normalized call

Challenges

Customers respond to an anomaly in different ways.

Events may not be detectable by a single category.

=—All calls
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Challenges
-

-1 Customers respond to an anomaly in different ways.

-1 Events may not be detectable by a single category.

—All calls

1
— Technical or
g 038 Troubleshooting
E £ 0.6 Cannot Make or
% 304 Receive Calls
£ > —Technical
> 0.2 ) Voice

O T F'TTTTTTTTTTTTTTTTTT T T T T I TTTTTTT] -Io

Week 1 2 3 4 5 6 7



Challenges
-

-1 Customers respond to an anomaly in different ways.
-1 Events may not be detectable by a single category.

01 There are thousands of categories.

—All calls

]
— Technical or
g 038 Troubleshooting
E £ 0.6 Cannot Make or
T _2 0.4 Receive Calls
£ > —Technical
é 0.2 Voice

O [T F'TTTTTTTTTTTTTTTTTTI T T T T I TTTTTTT1 _Anomaly-related

Week 1 2 3 4 5 o) 7 calls



Our Approach

We use regression to approach the problem
by casting it as an inference problem:

Axr = b

A(t,n): # calls of category n at time
x(n): weight of the n-th category

b(t): anomaly indicator at time t
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Our Approach

Training set: the history data
A: Input timeseries of customer care calls
b: Ground-truth of when anomalies take place
x: The weight to learn

AXx = b
Testing set:
A’: The latest customer care call timeseries

x: The weight learning from training set
b’: The anomaly to detect

AX =D
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Issues

Dynamic x

The relationship between customer care calls and anomalies
may change.

Under-constraints
# categories can be larger than # training traces
Over-fitting

The weights begin to memorize training data rather than
learning the generic trend

Scalability

There are thousands of categories and thousands of time
intervals.

Varying customer response time
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System Overview

Reducing Categories

4 )
Clustering
v
|dentifying important categories
\_ . _ /
Regression
4 )
Temporal Low-rank
stability structure
g * J
Combining multiple
INFOCOM 2013 classifiers
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Clustering

Agents usually classify calls ﬁed"‘i"g C°'99°’ies\
based on the textual names Clustering
of categories. \ 4
. . o . |dentifying important
e.g. “Equipment”, “Equipment \ T ))
problem”, and Regression ll
“Troubleshooting- Equipment”’
Temporal Low-rank
Cluster categories based on [ stability || _structure }
the similarity of their textual Wy

names Combining multiple

. . o classifiers
Dice’s coefficient
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ldentify Important Categories

]

1 Ly-norm regularization ?educmg quegmies\
Penalize all factors in x equally [ CIUSTvering J
and make x sparse [Identifying important}
Select categories with \\EEcaiedaticsa /

corresponding value in x is not O Regression l

E[ Temporal J[ Low-rank B

| 2 stability structure

mﬁgnHAm B bHQ_I_AHajHl Combinirtmul’riple
[ classifiers }
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Regression

Reducing Categories

Impose additional structures for

under-constraints and over-fitting Clustering h
The weight values are stable — V
|dentifying important
Small number of factors of L categories ) )
dominate anomalies Regressionll
Temporal Low-rank
.. stability structure
Fitting Error v
2 Combining multiple
X) =" || Agzg — g moltip
f( ) H dtd de2 classifiers
d
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Regression

Temporal stability

The weight values are stable
across consecutive days.

g(X) =

2
XxTﬂ
2
T129..7]
-1 —1 0
0 1 —1

Reducing Categories

a )
Clustering

\ 4

|dentifying important

\\ categories Y,
Reg ressionl’
Low-rank
structure

Temporal
stability

Combining multiple

classifiers
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Regression

Reducing Categories

Low-rank structure

4 = , )
The weight values exhibit low- USf;r'"g
rank structure due to the temporal i dentifying important
stability and the small number of (| categories ) )
dominant factors that cause the Regressionl’
anomalies. Temporal || Low-rank
9 stability structure
- 1
h(X,U,V)—HX—UxV H %
2 Combining multiple
X ~ U X VT classifiers
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Regression

]
0 Find the weight X that
minimize:

o(X,U, V) =

fX)+a-g(X)+5-hX,UV)

f(X): Fitting error

~N

J A

g(X): Temporal stability

\.

h(X,U,V): Low-rank

J
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Reducing Categories

[

Clustering

|

\ 4

~

categories

|dentifying important

L

)

Reg ression&

structure

FEE)

v

L Combining multiple j

classifiers
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Combining Multiple Classifiers

- What fime scale should be ~ ecucing Categories |
used? [ Clustering J
\ 4
Customers do not respond to an [ e e et J
anomaly immediately L categories ) )
The response time may differ by Regression &
hours [ Temporal J[ Low-rank J
stability structure
1 Include calls made in previous v
n (7"’5) and next m (O~6) [Combining multiple}
hours as additional features. EEESEE
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Evaluation

Dataset

Customer care calls: data from a large network service
provider in the US during Aug. 2010~ July 2011

Ground-truth anomalies: all anomalies reported by Call
Centers, Network Operation Centers, and etc.

Metrics

Prc-?cmon: the fraction .of claimed anomalies tp+fp
which are real anomalies

tp
Recall: the fraction of real anomalies are claimed Ip+In
F-score: the harmonic mean of precision and recall
1 1
precision_i_recall
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Evaluation —

ldentifying Important Features
-h
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Evaluation —

ldentifying Important Features
-h

0.7
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Evaluation —

ldentifying Important Features

0.7
0.6
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0.4
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0

Precision

tp
tp+fp

Recall

tp
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F-score
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Evaluation —

ldentifying Important Features
-
0.7

0.6
0.5
0.4 -
0.3 -
0.2 -
0.1 -

0 -

BLl-norm

BL2-norm
PCA

® rand 2000

Precision Recall F-score

L1-norm out-performs rand 2000, PCA,
and L2-norm by 454%, 32%, and 10%
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Evaluation — Regression

T .
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Evaluation — Regression

Precision

tp

Recall
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F-score
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Evaluation — Regression

]
0.7

0.6
0.5
0.4 -
0.3 -
0.2 -
0.1 -

0 -

M Fit+Temp+LR
W Fit
Rand 0.3

Precision Recall F-score

Fit+Temp+LR out-performs Random and Fit
by 823% and 64% 3




Contributions

Propose to use customer care calls as a
complementary source to network metrics.

A direct measurement of QoE perceived by
customers

Develop a systematic method to automatically
detect events using customer care calls.
Scale to a large number of features

Robust to the noise
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Backup Slides
I
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Twitter

Leverage Twitter as external data
Additional features
Interpreting detected anomalies

Information from a tweet

Timestamp

Text
Term Frequency - Inverse Document Frequency (TF-IDF)

Hashtags: keyword of the topics

Used as features
e.g. #ATTFAIL

Location

INFOCOM 2013
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Interpreting Anomaly - Location
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Describing the Anomaly

Examples

3G network outage
Location: New York, NY

Event Summary: service, outage, nyc, calls, ny, morning,
service

Outage due to an earthquake
Location: East Coast

Event Summary: #earthquake, working, wireless, service,
nyc, apparently, new, york

Internet service outage

Location: Bay Area

Event Summary: servicel, bay, outage, service, Internet,
area, support, #fail



How to Select Parameters

K-fold cross-validation
Partition the training data into K equal size parts.

In round i, use the partition i for training and the
remaining k-1 partitions for testing.

The process is repeated k times.
Average k results as the evaluation of the selected

value

INFOCOM 2013
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