

MAGPRINT: Deep Learning Based User Fingerprinting Using Electromagnetic Signals

Lanqing Yang[#], Yi-Chao Chen[#], Hao Pan[#], Dian Ding[#], Guangtao Xue[#], Linghe Kong[#], Jiadi Yu[#], Minglu Li^{*}

Shanghai Jiao Tong University[#] Zhejiang Normal University^{*}

Outline

- Background
- Motivation
- Preliminary
- Challenge and Methodology
- Evaluation
- Conclusion and Future Work

Background

Smart Devices are everywhere...

Biological Feature Based Solutions

- 2D/3D Face Model
- Fingerprint

• Iris

cannot perform continuous user authentication!

User Behavior Feature Based Solutions

User Behavior Feature Based Solutions

• Common phenomenon: electromagnetic radiation signals

- We propose *MagPrint*, a novel EM signals based solution using *magnetometer*
- Advantages of *EM side channel* :
 - Contain rich user behavior information
 - Data accessibility, and easy to deploy

Preliminary

• Q1: Detection and distinction of users' operations.

Preliminary

• Q2: Distinction of users' operation habits.

Preliminary

• Q3: Consistence over spatial and temporal domain.

System Workflow

 Noisy EM signals caused by human movements because of the geomagnetic signal.

Noisy EM signals caused by background running APPs.

- Filter out noisy EM signals caused by human movement
 - Low-pass filter to capture interactions
 - Gaussian filter to eliminate random noise

Keyboard Inputs

- Cancel the noisy EM signals caused by background running APPs
 - EM signals of Background Running APP change over time.
 - This change is gradual, such as listening to music.
 - 2-layer LSTM regression model is applied to cancel the background APP noise.

Challenge II — Diversity of APPs on the market

Classify APPs into multiple categories

Frequency of	Typing	Clicking	Moving
Internet	3	5	5
Business	5	5	3
Communication	5	3	3
Game	1	3	5
Multimedia	1	1	1
SNS	3	3	5
System	3	4	3

APP categories classified by interaction behaviors

Classify APP into categories can reduce train data needed and remain high accuracy

Challenge III — Users' Habits Tracking

- Mining users' habits from high-frequency EM signals.
- Users finish interactions in short time, while capturing users' habits need long time range.
- Present users' habits also depends on previous user interactions.
- Users' using habits change over time or mood, and there are also users with similar habits.

Users' Habits Extraction

Distinguish Similar User Habits

 $L = \max(d1 + \alpha - d2, 0)$

19

Prototype

Sensor Board

Sensor Chip

2.8 IOSETAD VERSIONING 2. IMORETEACK_S

MCU Board

Prototype on hand

Evaluation

TABLE II: List of 30 Apps collected in the experiments.

App Category	Apps
Internet	Chrome, Firefox, Internet Explorer,
	Amazon Shopping, Baidu Cloud Download
Business	Microsoft Word, Excel, Power-point,
	Microsoft Notepad, Adobe Acrobat XI Pro
Communication	Skype, Tencent WeChat, QQ
Game	Zuma, Candy Crush Saga, Minecraft,
	Plants vs. Zombies, Agar Online
Multi Media	Youtube, Tencent Video, Aqiyi Video, Potplayer,
	NetEase cloud Music, Windows Media Player
SNS	Gmail, Github, Twitter
System	System Player, System Camera, System 3-D Plot

TABLE III: List of 10 devices collected in the experiments.

Model	OS versions	CPU Speed(GHZ)
MacBook Air MQD32CH/A	MacOS 10.13	1.7
MacBook Pro MMGM2CH/A	MacOS 10.13	2.8
Hp ENVY14-J102TX	Windows 10	1.6
Hp 15-be101TX	Windows 10	2.5
Lenovo T440	Windows 10	2.4
ASUS Vivobook 4000	Windows 10	2.4
ASUS FX-PRO	Windows 8	2.4
Samsung 800G5M-X08	Windows 8	2.5
Dell Ins-15PD-7745BR	Ubuntu 17.10	2.3
Acer SF314-52-59TW	Ubuntu 17.10	2.5

Evaluation

Accuracy across users

Same OS:92.0% Across OS: 83.7%

Leave-one-device-out cross validation

Conclusion and Feature Work

Conclusion

- Propose a novel continuous user fingerprinting method
- Deep learning based user interaction habits tracking
- Easy-to-deploy prototype

Future work

- Expand training set, improve accuracy and robustness
- New scenarios such as energy saving and privacy protection

