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Abstract—Federated learning enables distributed learning in a
privacy-protected manner, but two challenging reasons can affect
learning performance significantly. First, mobile users are not
willing to participate in learning due to computation and energy
consumption. Second, with various factors (e.g., training data
size/quality), the model update quality of mobile devices can vary
dramatically, inclusively aggregating low-quality model updates
can deteriorate the global model quality. In this paper, we propose
a novel system named FAIR, i.e., Federated leArning with qualIty
awaReness. FAIR integrates three major components: 1) learning
quality estimation: we leverage historical learning records to
estimate the user learning quality, where the record freshness
is considered and the exponential forgetting function is utilized
for weight assignment; 2) quality-aware incentive mechanism:
within the recruiting budget, we model a reverse auction problem
to encourage the participation of high-quality learning users, and
the method is proved to be truthful, individually rational, and
computationally efficient; and 3) model aggregation: we devise
an aggregation algorithm that integrates the model quality into
aggregation and filters out non-ideal model updates, to further
optimize the global learning model. Based on real-world datasets
and practical learning tasks, extensive experiments are carried
out to demonstrate the efficacy of FAIR.

I. INTRODUCTION

With the rapid development of Internet of Things (IoT),
a large amount of data is continuously generated at the
network edge, which provides opportunities to enable learning-
based intelligent services [1]–[3]. Traditionally, the centralized
learning framework requires a gigantic amount of training
data to be aggregated to a cloud center for model training.
However, it can lead to a disclosure of user privacy [4].
Besides, both the data delivery overhead for power-constrained
mobile devices and the data maintenance cost at the cloud, are
prohibitive during the system implementation and operation
[5]. Recently, with the emerging technology of mobile edge
computing (MEC), mobile devices can be equipped with
significant computing and storage capability to enable local
computing and model training [6]–[8]. MEC has also pushed
forward the research of federated learning [9], which allows
a community of computationally-capable nodes to collabora-
tively build a global learning model without compromising
user privacy. Specifically, federated learning is a distributed
learning framework, where all nodes independently train the

global model based on local data and only model updates are
committed to the cloud server for aggregation. In this way,
distributed model updates can be aggregated to improve the
global model quality in a privacy-preserving manner.

Despite the promising merits of federated learning, tech-
nical challenges still exist. First, the success of federated
learning is highly dependent on node participation. However,
without satisfactory rewards, it is conceivable that computing
nodes are not willing to participate in federated learning at
the cost of computation and transmission resources. Second,
due to various factors, such as training data size/quality
and computational capability, the quality of model updates
contributed by participating nodes varies significantly. It is
non-trivial to recruit suitable nodes to participate in federated
learning, especially when the recruiting budget is limited. One
plausible approach is to select as many participating nodes
as possible. However, inclusively aggregating excessive low-
quality model updates can deteriorate the global model quality
and inflict model convergence problems [10], [11], which has
been verified with field experiments.

There have been some efforts to improve the performance
of federated learning, which however cannot well tackle the
above challenges. Particularly, they designed federated learn-
ing algorithms to accelerate learning convergence [12], pro-
posed control algorithms to determine the frequency for global
aggregation [13], or focused on the security and privacy en-
hancement for federated learning systems [14]. Although these
researches have made contributions to federated learning, they
are based on a common assumption that there are enough vol-
unteer participants for federated learning. However, volunteer
participation is not realistic in practice, because model learning
consumes enormous resources including energy, computation,
and bandwidth, which is usually prohibitive to resource-
scarce mobile nodes. To address this problem, recently, a few
works have investigated the incentive mechanism for federated
learning [15]–[17]. Specifically, in the work [15], Kang et al.
investigated the reputation of mobile nodes and designed the
incentive mechanism based on contract theory. Likewise, in the
studies of [16] and [17], the authors respectively considered
the communication efficiency and leveraged reinforcement
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learning to achieve user incentives. However, none of them
considers the quality of model updates, which can significantly
affect the learning performance.

To bridge this gap, in this paper, we investigate the quality-
aware federated learning, where the individual learning quality
is estimated to facilitate the precise user incentive and model
aggregation. Particularly, in a multi-task learning scenario,
we propose a distributed learning system named FAIR, i.e.,
Federated leArning with qualIty awaReness, to determine the
learning task allocation and corresponding payment, and con-
duct model aggregation. Functionally, FAIR integrates three
major technical components: 1) learning quality estimation, 2)
quality-aware incentive mechanism, and 3) model aggregation.
We first adopt the loss reduction during the learning process
to quantify the individual learning quality, and leverage the
historical quality records to infer the current learning quality.
With the estimated quality, a reverse auction case is then built
to motivate user participation, where mobile users submit their
bids and the platform acts as the auctioneer. To maximize the
collective learning quality of all the participants, within the
recruiting budget, we formulate a Learning Quality Maximiza-
tion (LQM) problem, which is proved to be NP-hard. To make
real-time decisions at low time complexity, we devise a greedy
algorithm to determine the learning task allocation and reward
distribution based on Myerson’s theorem. Finally, we devise
a new aggregation algorithm that integrates the model quality
into aggregation and filters out non-ideal model updates, to
further enhance the global learning model.

Theoretical analysis indicates that, the proposed FAIR is
truthful, individually rational, and computationally efficient.
To evaluate the performance of FAIR, we build an emulation
system based on real-world datasets and widely adopted learn-
ing models. We conduct extensive experiments under various
distributed learning scenarios, and the results demonstrate the
efficacy of FAIR. Particularly, FAIR advances in both the user
incentive and model aggregation, collectively contributing to
the superior federated learning performance that can outper-
form the benchmarks significantly.

We highlight our major contributions as follows.
• We investigate the quality-aware federated learning,

where the individual learning quality is estimated to
facilitate precise user incentive and model aggregation. It
is crucial in practical distributed learning scenarios, but
to our best knowledge, is rarely seen in the literature.

• We propose FAIR to determine the learning task al-
location and the corresponding payment, and conduct
model aggregation in real time. In FAIR, we design and
implement three major components: 1) learning quality
estimation, 2) quality-aware incentive mechanism, and 3)
model aggregation.

• Extensive experiments are carried out to demonstrate
the efficacy of FAIR, where the incentive mechanism
can stimulate more high-quality model updates, and the
devised aggregation algorithm can effectively aggregate
the model updates, collectively contributing to a superior
globe learning model.
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...
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Fig. 1. An overview of the distributed federated learning system.

The remainder of this paper is organized as follows. We
describe the system scenario and give the problem definition
in Section II. In Section III, we present the overview of FAIR
with highlighting design goals. We elaborate on the design of
FAIR in Section IV, and conduct the theoretical analysis on
FAIR in Section V. Extensive experiments are carried out to
evaluate the performance in Section VI, and the related work
is reviewed in Section VII. Finally, we conclude this paper
and direct our future work in Section VIII.

II. SYSTEM DESCRIPTION AND PROBLEM DEFINITION

In this section, we first describe the targeted scenario of a
distributed learning system with multiple learning tasks, then
formally define the quality-aware federated learning problem,
and finally conduct the problem tractability analysis.

A. System Description

As shown in Fig. 1, we consider a distributed learning
system, where there are one cloud platform and various mobile
computing nodes. Denote by N = {1, 2, . . . , N} the set of
mobile computing nodes, which can be recruited to conduct
model training locally. The system operates in a time-slotted
manner and the time span is partitioned into T consecutive
slots with equal duration. We focus on a multi-task learning
scenario and assume that the model iterates once in a slot. In
each iteration, the cloud platform publishes a set of learning
tasks, Lt = {lt1, lt2 . . . }, where ltj represents the jth learning
task published in iteration t. Typically, a learning task demands
both training data variety and learning model quality. Note
that, the learning task is labeled with the iteration t since
the aggregated model quality is different in each iteration.
In addition, for each learning task ltj in the iteration t, the
cloud platform issues a learning budget, Bt

j , to recruit suitable
computing nodes to learn the model collaboratively. Denote
by Bt the set of learning budget in iteration t. As computing
nodes have limited computing capability with different data
varieties, they can participate in different sets of learning tasks.
We denote the task set that the node i can participate in as
Lt
i ⊆ Lt. Furthermore, each computing node is constrained to

participate in at most one learning task in each iteration.

B. Problem Definition

In each iteration t, the platform has to determine which
learning task is executed by which computing node (i.e., the
learning task allocation) at what price (i.e., determining the
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payment), considering the learning budget. Once a comput-
ing node is recruited to participate in a learning task, the
node will download the corresponding global model, train
the model with its own data samples, and submit the local
model updates to the platform. After the platform receives the
model updates from different nodes, it will aggregate them to
update the global models of learning tasks. With the evolving
of iteration, the aggregated model quality can be enhanced
with more training data over time. Once the model quality
reaches a threshold, the learning task terminates and the global
learning model can be adopted by the system in all subsequent
iterations. As the system has to use the global learning model
in each iteration, the aggregated model quality of each learning
task should be maximized in every iteration. Formally, our
quality-aware federated learning problem is cast as follows.

Definition 1 (Quality-Aware Federated Learning). For each
iteration t, given the sets of learning tasks Lt and learning
budgets Bt, how to allocate the learning tasks, distribute
payments, and aggregate the model updates, such that the sum
of qualities of all aggregated learning models is maximized?

A binary variable sti,j ∈ {0, 1} is used to indicate whether
the task ltj is allocated to node i in iteration t, which equals
1 if the task is allocated to the node, and equals 0 otherwise.
Denote by rti,j the payment reward to recruit node i to
participate in learning task ltj in iteration t, and denote by
cti,j the learning cost of the participating node with respect to
the computation and energy consumption. Then, the quality-
aware federated learning problem can be formulated as

max
Mt,Rt

∑
ltj∈Lt

f(Mt), (1)

s.t. sti,j ∈ {0, 1}, ∀i ∈ N ,∀ltj ∈ Lt, (2)∑
i∈N

rti,js
t
i,j ≤ Bt

j , ∀ltj ∈ Lt, (3)

sti,j = 0, ∀ltj /∈ Lt
i,∀i ∈ N , (4)∑

ltj∈Lt

sti,j ≤ 1, ∀i ∈ N , (5)

where Mt = {sti,j}∀i∈N ,∀ltj∈Lt is the learning task allocation
results in the iteration t, Rt = {rti,j}∀i∈N ,∀ltj∈Lt is the
payment determination results in the iteration t, and f() is the
model aggregation function with inputs of model updates. The
constraint (3) represents that for each learning task, the sum of
payments should not exceed the learning budget provided by
the task publisher. The constraints (4) means that each node
can only be assigned with learning tasks that it can participate
in. In constraint (5), the system limits each node to participate
in at most one learning task in every iteration.

C. Problem Difficulties
The formulated quality-aware federated learning problem

is intractable directly due to the following reasons. First, the
problem is hard to be mathematically externalized in terms
of the model aggregation function since there is a lack of an
appropriate metric to quantify the learning qualities of both
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Fig. 2. Architecture of FAIR.

the individual model updates and global aggregated models.
Additionally, the quality of model updates to be uploaded
is unknown ahead before learning, which brings challenges
to the task allocation. Second, it is rather challenging to
allocate multiple learning tasks with both-satisfied payments,
especially when the learning budget is limited. On the one
hand, the nodes have different computation and communica-
tion costs, and it is hard to model the learning cost of each
participating node. On the other hand, participants are usually
strategically selfish, and they tend to claim a higher cost than
the real one in order to increase individual learning profit.
Third, with the model updates, how to aggregate them is also
crucial to the aggregated model quality, hereby expecting an
efficient model aggregation mechanism that can effectively
aggregate the model updates with different learning qualities.
In this paper, we propose FAIR to systematically address those
challenges, and thus provide a solution to the quality-aware
federated learning problem.

III. OVERVIEW OF FAIR

A. Design Overview

As shown in Fig. 2, FAIR integrates three major com-
ponents: 1) learning quality estimation; 2) quality-aware in-
centive mechanism, and 3) model aggregation. Specifically,
to mathematically pinpoint the optimization problem, we first
adopt the loss reduction to quantify the individual learning
quality, and leverage the historical learning records to pre-
dict the current learning quality. With the estimated learning
quality, we then model the interaction between the platform
and computing nodes as a game-theoretic reverse auction to
cast a quality-aware incentive mechanism. In the incentive
mechanism, during each iteration t, the platform announces
the learning task set Lt to the computing nodes, and each
node i submits its bid information Bt

i = {(ltj , bti,j)}∀ltj∈Lt
i

to
the platform. The tuple (ltj , b

t
i,j) consists of the learning task

ltj that the node wants to participate in, and the corresponding
bid price bti,j . In this way, the original quality-aware federated
learning problem can be transformed and solved by following
two optimization directions. On the one hand, working with
the reverse auction, we formulate the Learning Quality Max-
imization (LQM) problem to allocate the learning tasks with
payments, and the objective is to recruit more high-quality
model updates within the learning budget. On the other hand,
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with the model updates of participating nodes, we devise a
model aggregation algorithm to detect outlier model updates
and effectively aggregate the qualified model updates to further
improve the aggregated model quality.

B. Design Goals

FAIR aims to maximize the sum of qualities of all aggre-
gated learning models in each iteration while ensuring truth-
fulness, individual rationality, and computational efficiency.
As computing nodes are strategically selfish, the truthfulness
goal is set to avoid nodes declaring untruthful bid price. To
quantify the benefits of computing nodes when participating
in a learning task, the node utility is defined.
Definition 2 (Node Utility). In iteration t, the utility gain of
node i by participating in learning task ltj is the difference
between the reward and learning cost, i.e.,

uti,j =

{
rti,j − cti,j , if i ∈Mt

j ;

0, otherwise.
(6)

Then, the design goals are defined as follows.
Definition 3 (Truthfulness). A mechanism is truthful if, in
each iteration t, no node can increase its utility by reporting
untruthful bid price with bti,j > cti,j . Formally, for each node
i with true bid price, i.e., bti,j = cti,j , if the node i is truthful
in iteration t, its utility is Ui, otherwise Ûi. We have Ui ≥ Ûi

for each node.
Definition 4 (Individual Rationality). A mechanism is indi-
vidually rational if the utility of each node i in each iteration
t is non-negative, i.e., uti,j ≥ 0.
Definition 5 (Computational Efficiency). A mechanism is
computationally efficient if the task allocation, payment deter-
mination, and model aggregation can be conducted within a
polynomial time.

IV. DESIGN OF FAIR

A. Estimating Learning Quality

After receiving model updates contributed by participating
nodes, the system can evaluate the learning quality of model
updates. However, the learning quality is unknown ahead
before learning, and thus in each iteration, FAIR first estimates
the learning quality of candidate participants to assist in
allocating tasks with payments.

1) Learning Quality Quantification: In federated learning,
both the volume and quality of the training data can affect
the learning quality significantly. The quantification of the
learning quality should adequately reflect how useful that the
local model updates can contribute to the global model. One
plausible approach is to adopt each node’s local model accu-
racy tested on a global dataset as the learning quality. However,
in this approach, the test on each local model is required in
each iteration, which can inflict significant overhead. Different
from the accuracy measurement, the loss value is calculated in
training with no additional overhead. Therefore, we leverage
the loss reduction in each iteration to quantify the training
data quality. Specifically, suppose iteration t starts at time
ts and ends at time te. At time te, the received local model

updates are aggregated to update the global models, and the
next iteration starts. Hence, participating nodes are required
to submit their local model updates at time tui,j within [ts, te],
otherwise, their local model updates will be rejected with no
system rewards. Suppose the average test loss value of task ltj’s
global model at time ts is lossj(ts) and the average training
loss value of node i’s local model at time te is lossi,j(te). We
define the training data quality of node i in iteration t as

mt
i,j = lossj(ts)− lossi,j(te). (7)

Combining the amount of data (denoted by Dt
i,j) used for

training, the learning quality of node i in iteration t is defined
as follows

qti,j =

{
mt

i,jD
t
i,j , if ts < tui,j ≤ te;

0, otherwise.
(8)

2) Learning Quality Estimation: With the learning quality
quantification, we then proceed to estimate the current learning
quality of each candidate. Particularly, as the distributed learn-
ing runs iteratively, we leverage the historical quality records
of a participant in learning tasks, to estimate its model update
quality. Supposing that node i has participated in the learning
task lj in iteration t0, t1, . . . , tr, we can utilize the quality
records (qt0i,j , q

t1
i,j , . . . , q

tr
i,j) to estimate the quality, qti,j , that is

contributed in iteration t, where t > tr. The learning quality
of one node may change with time, and intuitively, the recent
quality records are more informative than the stale quality
records. Therefore, instead of giving all quality records the
same weight, we weight them according to their freshness
[18]. Specifically, we adopt an exponential forgetting function
to assign the weights, which gives larger weights to the recent
quality records and smaller weights to the stale ones [19].
The most recent quality record receives the weight of 1 and
other record weights are determined by their relative position
to the most recent quality record. The according weights of
(qt0i,j , q

t1
i,j , . . . , q

tr
i,j) are (ρtr−t0 , ρtr−t1 , . . . , 1), where 0 < ρ ≤

1 is the forgetting factor [20]. Above all, the estimated quality
value q̂ti,j can be obtained as

q̂ti,j =

∑r
k=0 ρ

tr−tkqtki,j∑r
k=0 ρ

tr−tk
. (9)

B. Quality-Aware Incentive Mechanism

After estimating the learning quality for each candidate,
we then solve the defined quality-aware federated learning
problem in two steps. Within the learning budget, we first
encourage high-quality computing nodes to participate in the
learning tasks via a quality-aware incentive mechanism. Then,
with model updates, we devise an algorithm to further enhance
the model aggregation performance. In this subsection, we
focus on the design of quality-aware incentive mechanism. In
each iteration, we model a reverse auction case to stimulate
high-quality candidate participants, where each node i submits
its bid information Bt

i, and for each learning task ltj , FAIR
selects a set of winner nodes Mt

j ⊂ N and determines a
payment set Rt

j = {rti,j}∀i∈Mt
j

within the learning budget.
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Specifically, we can formulate the LQM problem as follows.
Definition 6 (The LQM Problem). In each iteration t, in
accordance with the bids information, how to select a set of
winner nodes Mt

j with payments Rt
j for each learning task

ltj , such that the sum of the estimated learning qualities of the
selected nodes is maximized?

The defined LQM problem can be formulated as

max
Mt

j ,Rt
j

∑
ltj∈Lt

∑
i∈Mt

j

q̂ti,j , (10)

s.t.
∑
i∈N

rti,js
t
i,j ≤ Bt

j , ∀ltj ∈ Lt, (11)

rti,j ≥ bti,j , ∀ltj ∈ Lt,∀i ∈Mt
j , (12)

sti,j ∈ {0, 1}, ∀i ∈ N ,∀ltj ∈ Lt, (13)

sti,j = 0, ∀ltj /∈ Lt
i,∀i ∈ N , (14)∑

ltj∈Lt

sti,j ≤ 1, ∀i ∈ N . (15)

Inputs. The LQM problem takes the task set Lt
i of each

node i ∈ N , the bid price bti,j ,∀i ∈ N ,∀ltj ∈ Lt
i, the learning

budget Bt
j ,∀ltj ∈ Lt, and the quality estimation value q̂ti,j ,∀i ∈

N ,∀ltj ∈ Lt as inputs. Outputs. FAIR determines the value
of the binary variable sti,j for each i ∈ N and ltj ∈ Lt. If
sti,j = 1, the node i will be included into the selected nodes set
Mt

j which means that the learning task ltj will be allocated to
the node i. Also, FAIR determines the learning reward rti,j in
the set Rt

j for each winner node. Constraints. The constraints
for LQM problem include all the constraints of the quality-
aware federated learning problem, but the Constraint (12) is
additionally required, which guarantees that the payment to
each node is larger than its claimed bid price. For the LQM
problem, we have the following Theorem.
Theorem 1. The LQM problem is NP-hard.
Proof. To prove its NP-hardness, we devise a polynomial
reduction from a classic NP-hard problem, i.e., Multiple Knap-
sack Problem with Assignment Restrictions (MKAR) [21],
which is a variant of the well-known NP-hard problem of Mul-
tiple Knapsack Problem (MKP) [22], to our formulated LQM
problem. An instance of the MKAR problem can be given as
follows. Suppose there is an item set O = {o1, o2, . . . , on}
with specified value vi and weight wi for each item oi ∈ O,
as well as a knapsack set B = {b1, b2, . . . , bm} with specified
capacity cj for each knapsack bj ∈ B. For each item oi ∈ O, a
set Bi ⊆ B of knapsacks that can hold item oi is specified. To
maximize the total value of assigned items, for each knapsack
bj ∈ B, we need to choose a subset Oj ⊆ O of items to be
assigned to knapsack bj , such that: 1) each item is assigned
to at most one knapsack; 2) each Oj is a subset of Aj , where
Aj ⊆ O is the set of items that can be assigned to knapsack bj ;
3) total weight of items assigned to a knapsack is no more than
the capacity of the knapsack. Hereafter, based on the instance
of the MKAR problem, we construct an instance of the LQM
problem. First, we transform the item set O and knapsack set
B into node set N and learning task set Lt, respectively. Then,
we assume that each node has the same bid price and quality

Algorithm 1: Solving the LQM problem.
Input : (1) bid price bti,j ; (2) budget Bt

j ; (3) task set Lt
i;

(4) quality estimation values q̂ti,j .
Output : (1) the task allocation results sti,j ; (2) the

payments rti,j .
1 Initialize N t

j ← ∅, ptj ← 0 for each ltj ∈ Lt;
2 Initialize xti ← 1 for each i ∈ N ;
3 Initialize rti,j ← 0, sti,j ← 0 for each i ∈ N , ltj ∈ Lt;
4 foreach i ∈ N do
5 foreach ltj ∈ Lt

i do
6 N t

j ← N t
j + {i};

7 end
8 end
9 while ∃ xti = 0 and ∃ ptj = 0 do

10 Initialize Mt
j ← ∅ for each ltj ∈ Lt;

11 foreach ltj ∈ Lt do
12 if ptj = 0 then
13 Sort all i ∈ N t

j in descending order of
qti,j
bti,j

;

14 Find the smallest k such that∑k
i=1

btk,j

qt
k,j
qti,jx

t
i > Bt

j ;

15 for i← 1 to k − 1 do
16 Mt

j ←Mt
j + {i};

17 rti,j ←
btk,j

qt
k,j
qti,j ;

18 end
19 end
20 end
21 Find the task ltk with maximum

∑
i∈Mt

k
qti,kx

t
i;

22 Set ptk ← 1;
23 foreach i ∈Mt

k do
24 if xti = 1 then
25 sti,k ← 1;
26 xti ← 0;
27 end
28 end
29 end
30 return (sti,j , r

t
i,j);

value for each learning task, that is, bti,j = bti and q̂ti,j = q̂ti for
all ltj ∈ Lt

i. Next, we set rti,j = bti,j for all ltj ∈ Lt, i ∈ Mt
j .

Finally, we set vi = q̂ti , wi = rti for all i ∈ N , and Bt
j = cj

for all ltj ∈ Lt. In this way, each instance of the MKAR
problem is polynomial-time reducible to an instance of the
LQM problem. Therefore, the LQM problem is an NP-hard
problem, which concludes the proof.

Given the NP-hardness of the LQM problem, in FAIR,
we devise a heuristic algorithm to solve the LQM problem
with truthfulness, individual rationality, and computational
efficiency. Myerson’s theorem [23] of truthfulness has proved
that a mechanism for auction problems is truthful if and only
if the winner selection problem is monotone and the payment
of each winner is a critical value:

• Monotonicity. If node i wins in iteration t by claiming
a cost bid price bti,j for performing the learning task, it
will still win with any cost bid b̂ti,j < bti,j .

• Critical payment. If node i wins with the bid price bti,j ,
it can also win with other bid b̂ti,j , but bidding with bti,j
makes it get the maximum payment, and then bti,j is said

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2022 at 07:08:46 UTC from IEEE Xplore.  Restrictions apply. 



to be the critical payment of node i. That is, a critical
payment is the maximum bid value for a bid to win.

We utilize the above theorem and devise the greedy algo-
rithm to solve the LQM problem in each iteration t. As shown
in Algorithm 1, in each iteration t, the algorithm first picks the
candidate nodes N t

j that can participate in the learning task
ltj (lines 4-8). Then, the main loop (lines 9-29) is executed
until there is no node that can participate in the learning tasks
or all tasks have been allocated to nodes for execution. In the
main loop, the algorithm first chooses a subset of winner nodes
Mt

j ⊆ N t
j for each task ltj that can approximately maximize

the sum of the estimated qualities of ltj’s winner nodes (lines
11-20). Specifically, the algorithm sorts node i ∈ N t

j in
descending order by qti,j/b

t
i,j , i.e., the quality contribution per

unit bid (line 13). The value of qti,j/b
t
i,j is a ranking indicator

for node i. Then, the algorithm greedily includes node i into
the winner node set Mt

j according to its ranking until the
total payment exceeds the budget Bt

j (lines 14-18). Here,
we determine the reward of node i according to its critical
payment. Denoting by k the node with the highest ranking
among all loser nodes, the maximum bidding price b′i,j that can
substitute node i as the winner satisfies qti,j/b

′
i,j = qtk,j/b

t
k,j .

This means the critical payment of node i is the bidding price
b′i,j =

btk,j

qtk,j
qti,j . The critical payment b′i,j is used as the payment

to node i (line 17). Finally, the algorithm finds the task ltk with
maximum

∑
i∈Mt

k
qti,kx

t
i (line 21), and allocates task ltk to the

obtained winner nodes (lines 22-28).
Obviously, algorithm 1 satisfies the constraints (11), (13),

(14), and (15). The constraint (12) as well as truthfulness and
computational efficiency will be proved in Section V.

C. Model Aggregation
In each iteration t, for each learning task ltj , after one or

multiple gradient-descent updates, each winner node i will
upload their local model parameters wt

i,j to the platform, and
then the platform will aggregate them to update the global
model parameters wt

j . The following Federated Averaging al-
gorithm has been widely adopted in state-of-the-art researches
(e.g., [9], [13]):

wt
j =

∑N
i=1D

t
i,jw

t
i,j∑N

i=1D
t
i,j

, (16)

where Dt
i,j is the amount of data used by node i to train the

learning model of task ltj in iteration t. Unlike the existing
model aggregation algorithms for federated learning, we ag-
gregate the model updates considering not only the training
data size of each node, but also the training data quality. That
is, in iteration t, given a set of winner nodes Mt

j of task ltj
and their local model parameters wt

i,j , the aggregated model
parameters wt

j used to update the global model of task ltj can
be computed by:

wt
j =

∑
i∈Mt

j
mt

i,jD
t
i,jw

t
i,j∑

i∈Mt
j
mt

i,jD
t
i,j

, (17)

where Dt
i,j and mt

i,j are the amount of data used for training
and the data quality of node i for task ltj , respectively. In

Algorithm 2: Model aggregation algorithm.
Input : (1) winner node set Mt

j ; (2) local model
parameters wt

i,j ; (3) data size used for training
Dt

i,j ; (4) data quality mt
i,j .

Output : aggregated model parameters wt
j .

1 Initialize high-quality node set Ht
j ←

{
i : i ∈Mt

j

}
;

2 Set D ←
∑

i∈Mt
j
mt

i,jD
t
i,j ;

3 Set wt
j ←

∑
i∈Mt

j

mt
i,jD

t
i,j

D
wt

i,j ;

4 foreach i ∈Mt
j do

5 Compute dti,j ← similarity(wt
j ,w

t
i,j);

6 end
7 Compute µ̄d, µ̂d, σd;
8 if µ̄d > µ̂d then
9 foreach i ∈ Ht

j do
10 if dti,j > µ̂d + ησd then
11 Ht

j ← Ht
j − {i};

12 end
13 end
14 else
15 foreach i ∈ Ht

j do
16 if dti,j < µ̂d − ησd then
17 Ht

j ← Ht
j − {i};

18 end
19 end
20 end
21 Set D ←

∑
i∈Ht

j
mt

i,jD
t
i,j ;

22 Set wt
j ←

∑
i∈Ht

j

mt
i,jD

t
i,j

D
wt

i,j ;

23 return wt
j ;

addition, to avoid the negative impacts of low quality models,
we design a computationally efficient method to detect and
filter out low-quality local model updates [24].

Specifically, Algorithm 2 shows the design of our model
aggregation algorithm. First, we aggregate the local model
updates received from winner nodes using (17) and we use
one of the distance models, cosine similarity to calculate
the similarity between wt

j and wt
i,j (lines 2-6). Second, we

calculate the mean (µ̄d), median (µ̂d), and standard deviation
(σd) of the similarity (line 7). Since the incentive mechanism
in FAIR eliminates most unreliable nodes before learning,
the majority of the received updates should be high-quality.
Therefore, the median (µ̂d) can reflect the direction of high-
quality local model updates. To be specific, we compare the
value of µ̄d and µ̂d, and if µ̄d > µ̂d, the low-quality updates
should have a similarity value dti,j higher than µ̂d. We treat the
local model updates whose similarity value dti,j > µ̂d+ησd, as
low-quality updates (lines 8-13). The parameter η is a preset
threshold that can control the range. Similarly, when µ̄d ≤ µ̂d,
the model updates will also be considered as low quality if
dti,j < µ̂d − ησd (lines 14-20). In this way, we get the high-
quality node set Ht

j whose local model updates are qualified.
Finally, we aggregate the qualified local model updates as the
aggregated results (lines 21-23).

V. PERFORMANCE ANALYSIS

In this section, we theoretically prove the truthfulness,
individual rationality, and computational efficiency of FAIR.
Theorem 2. FAIR is truthful.
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Proof. In each iteration t, node i might report a truthful bid
price bti,j = cti,j or any other untruthful bid price b̂ti,j . The
four bidding results of node i are as follows:

1) {win, win}: Node i wins in iteration t with both truthful
bid bti,j and untruthful bid b̂ti,j . In this case, the utility

of node i is uti,j(b
t
i,j) = uti,j (̂b

t
i,j) =

btk,j

qtk,j
qti,j − cti,j .

2) {loss, loss}: Node i loses in iteration t with both truthful
bid bti,j and untruthful bid b̂ti,j . In this case, the utility
of node i is uti,j(b

t
i,j) = uti,j (̂b

t
i,j) = 0.

3) {win, loss}: Node i wins in iteration t with truthful bid
bti,j and loses with untruthful bid b̂ti,j . In this case, the

utility uti,j(b
t
i,j) =

btk,j

qtk,j
qti,j − cti,j =

btk,j

qtk,j
qti,j − bti,j ≥ 0.

Because node i wins with bid bti,j and we have
qti,j
bti,j
≥

qtk,j

btk,j
according to nodes’ ranking in Algorithm 1. The

utility uti,j (̂b
t
i,j) = 0, and hence uti,j(b

t
i,j) ≥ uti,j (̂bti,j).

4) {loss, win}: Node i loses in iteration t with truthful
bid bti,j but wins with untruthful bid b̂ti,j . In this case,
the utility uti,j(b

t
i,j) = 0 and the utility uti,j (̂b

t
i,j) =

btk,j

qtk,j
qti,j − cti,j =

btk,j

qtk,j
qti,j − bti,j ≤ 0. Because node i

loses with bid bti,j and we have
qti,j
bti,j
≤ qtk,j

btk,j
according to

node ranking. Thus, uti,j(b
t
i,j) ≥ uti,j (̂bti,j) still holds.

As uti,j(b
t
i,j) ≥ uti,j (̂bti,j) holds in all cases, which means that

node i cannot improve its utility by reporting any untruthful
bid. Therefore, we can conclude that FAIR is truthful.
Theorem 3. FAIR is individually rational.
Proof. If node i loses in iteration t, its utility uti,j = 0.
Otherwise, node i wins with truthful bid bti,j = cti,j since
we have proved that nodes bid truthfully. The node utility
uti,j = rti,j − cti,j =

btk,j

qtk,j
qti,j − bti,j ≥ 0 due to

qti,j
bti,j
≥ qtk,j

btk,j
.

Therefore, uti,j ≥ 0 for each node i, and FAIR is proved to
be individually rational.
Theorem 4. The time complexity of task allocation and
payment scheme in FAIR is O(L2N logN), where L = |Lt|
is the number of learning tasks in iteration t, and N = |N |
is the number of nodes in set N . The time complexity of the
model aggregation algorithm in FAIR is O(MS), where M
is the number of nodes in winner set Mt

j and S is the model
parameter size of learning task ltj . Both time complexities are
polynomial, which are computationally efficient.

Proof. We analyze the worst case of Algorithm 1 where
|Lt

i| = L and |N t
j | = N . In the worst case, the main

loop in line 9 terminates after L times of iterations. Besides,
the computational complexity of sorting qti,j/b

t
i,j (line 13) is

O(N logN), where finding the smallest k (line 14) is O(N),
and finding the task ltk with maximum

∑
i∈Mt

k
qti,kx

t
i (line

21) is O(NL). Therefore, the computational complexity of
Algorithm 1 is O(L2N logN). In Algorithm 2, as the time
complexity of computing cosine similarity is linear with the
model size, the computational complexity of the loop in lines
4-6 isO(MS). Besides, the complexity to compute the median

Table I. Experiment parameters.

Settings |N | |Lt| bti,j Dt
i,j Ne Re Bt

j

I 20 1 [1,3] [1000,3000] 5 [0.05,0.5] 5
II 20 1 [1,3] 5000 [0,20] 0.5 10
III 100 4 [1,10] [1000,10000] 30 [0,1] [10,30]

of similarity (µ̂q) can be as fast as O(M) (line 7). Above all,
the computational complexity of Algorithm 2 is O(MS).

VI. PERFORMANCE EVALUATION

A. Evaluation Methodology

Experiment Setup. We build the FAIR emulation system
by adopting the widely-used PyTorch 1.4.0 software environ-
ment. The detailed experiment settings are shown in Table I,
where the bid price, computing capacity, and data quality of
distributed nodes are varying parameters. Besides, in the set
N , we assume there are Ne nodes whose mislabeled data ratio
in the training dataset is Re.

Models and Datasets. We evaluate the performance of
FAIR with the 6 most commonly adopted learning models,
including Multi-layer Perceptron (MLP), LeNet, MobileNet,
VGG-11, EfficientNet-B0, and ResNet-18. The above mod-
els are trained with four datasets: MNIST, Fashion-MNIST
(FMNIST), CIFAR-10, and the Street View House Numbers
(SVHN) dataset. MNIST is a dataset of handwritten digits and
FMNIST is a dataset of Zalando’s fashion article images, both
of which have a training set of 60 thousand examples and a test
set of 10 thousand examples. The CIFAR-10 dataset consists
of 50 thousand training images and 10 thousand test images in
10 classes. SVHN is a real-world house number image dataset
with 73 thousand training data and 26 thousand test data.

Benchmarks. To compare the performance, the following
reasonable benchmarks are designed.
• Theoretically optimal mechanism: It adopts the depth-

first search approach to find the theoretically optimal
solution for the LQM problem, which however cannot
guarantee the truthfulness of nodes.

• Knapsack greedy mechanism: It greedily selects winner
nodes based on the amount of data used for training
divided by the bid price, i.e., Dt

i,j/b
t
i,j , where the data

quality and truthfulness of nodes are not considered.
• Bid price first mechanism: It preferentially selects

nodes with the lowest bid price without guaranteeing the
truthfulness of nodes.

B. Performance of User Incentive

We first investigate the user incentive performance in FAIR.
We adopt the experiment setting I in Table I, where only one
learning task in each iteration is considered, i.e., |Lt| = 1. We
run 6 different learning tasks, respectively. Specifically, the
MLP and LeNet models are trained with MNIST and FMNIST,
respectively. The MobileNet and VGG models are trained
with CIFAR-10, while the EfficientNet and ResNet model are
trained with SVHN. In addition, for a fair comparison, all
benchmarks (including FAIR) adopt the Federated Averaging
algorithm for model aggregation. After running the incentive
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Fig. 3. The model aggregation performance of MLP-MNIST (MM), MLP-FMNIST (MF), LeNet-MNIST (LM), LeNet-FMNIST (LF), MobileNet-CIFAR10
(MC), EfficientNet-SVHN (ES) under different scenarios: a) Clean datasets; b) Noisy label datasets; c) Error label datasets; d) Attack datasets.
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Fig. 4. The average model accuracy with different incentive mechanisms.

game 30 iterations, we plot the average accuracy results of
learning models in Fig. 4. We can observe that for all learning
models, FAIR can achieve the near-optimal performance since
there is a negligible performance degradation when compared
with the accuracy results of the theoretically optimal mech-
anism, but FAIR can outperform the other two benchmarks
significantly. For instance, when evaluating on the ResNet
model, the knapsack greedy and bid price first mechanisms can
only achieve a 45% accuracy score, while FAIR can achieve a
score of 76%, which can improve the performance by 68.9%.

C. Performance of Model Aggregation

We then compare the model aggregation performance of
FAIR with the Federated Averaging (FA) algorithm. The six
models are trained with respective datasets, and each model is
trained with 10 nodes under 4 different scenarios1: a) Clean
datasets: all distributed nodes have the original unchanged
training datasets to train the model normally. At each node, the
amount of data Dt

i,j used for training is generated uniformly
within the range [1000, 10000]; b) Noisy label datasets: among
10 distributed nodes, the training datasets of 5 nodes are
clean, but in the training datasets of other 5 nodes, 50% of
data samples are incorrectly labeled, i.e., labels are randomly
generated; c) Error label datasets: among 10 distributed nodes,
the training datasets of 7 nodes are clean, but the training
datasets of other 3 nodes are incorrectly labeled; d) Attack
datasets: one of the 10 distributed nodes will submit a random
model update in each iteration while the others train normally.
In this experiment, except for the Clean datasets scenario, we
fix Dt

i,j = 3000 for other scenarios in each iteration.
Figure 3 shows the average model accuracy after running

30 iterations, and we can make two major statements. First,
FAIR can outperform the FA algorithm in all scenarios for
almost all models and datasets. Second, the model aggregation

1Note that, the incentive process is not considered in this experiment.

performance of the FA algorithm can deteriorate dramatically
when degrading the learning qualities of model updates, but
FAIR can work robustly under all scenarios. Taking the LeNet
learning model as an example, the model accuracy achieved
by the FA algorithm can decrease from 94.42% in the Clean
datasets scenario to 12.72% in the Attack datasets scenario,
but the accuracy achieved by FAIR only decreases from
95.60% to 82.71%. Similar observations can also be achieved
for other learning models under other scenarios.

D. Performance of Federated Learning

We finally evaluate the federated learning performance of
FAIR by integrating the user incentive and model aggregation,
where the impact of data quality and learning budget is
investigated. Specifically, we compare the performance of
FAIR with the knapsack greedy mechanism that adopts the
FA algorithm for model aggregation. The experiment setting II
in Table I is adopted, where we fix Dt

i,j = 5000 for each
node2 in each iteration and vary the noise level of the federated
community from 0% to 100%. The noise level refers to the
percentage of nodes within the federated community that has
50% mislabeled data. In addition, the learning budget is set
to be 10 in each iteration. After running 30 iterations, we
plot the average accuracy of the MLP, LeNet, MobileNet,
and EfficientNet models on their corresponding datasets in
Fig. 5, and we can achieve two major observations. First, under
almost all settings, FAIR can outperform the knapsack greedy
mechanism, and the performance gap becomes significant
when the noise level is within the range of 20% and 80%.
Second, although the learning quality decreases with the noise
level for both mechanisms, the performance of the knapsack
greedy mechanism decreases dramatically within low noise
levels (e.g., ≤ 40%), while the performance of FAIR remains
stable within the low noise levels.

We further investigate the impact of the learning budgets,
where the experiment setting III in Table I is adopted. There
are 100 distributed nodes and 4 learning tasks in each iteration.
Among the 100 nodes, the training datasets of 70 nodes are
clean but the other 30 nodes have noisy training datasets with
different levels of data qualities. With different learning bud-
gets, we plot the average test loss reduction of the MLP, LeNet,
MobileNet, and EfficientNet models on their corresponding
datasets in Fig. 6. We can observe that for all mechanisms,

2Note that, when the data size Dt
i,j is fixed, the performance of knapsack

greedy mechanism is equivalent to that of the bid price first mechanism.
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Fig. 6. The average test loss reduction of learning models vs. learning budgets.

the learning quality can improve with the learning budget.
In addition, after 30 iterations, FAIR can achieve supreme
performance under all settings when compared to the knapsack
greedy and bid price first mechanisms.

VII. RELATED WORK

A. Federated Learning

Recently, considerable research attention has been dedicated
to performance optimization for federated learning. Tran et
al. formulated an optimization problem of federated learning,
aiming to balance the trade-offs between computation and
communication latency, as well as the learning time and
energy consumption [25]. Wang et al. theoretically analyzed
the convergence rate of federated learning and achieved a
desirable trade-off between local update and global parameter
aggregation [13]. To reduce the communication overhead of
federated learning, Wang et al. proposed Communication-
Mitigated Federated Learning which avoids uploading irrele-
vant updates to the server [26]. Liu et al. proposed momentum
federated learning which uses momentum gradient descent in
the local update step to accelerate convergence [27]. Despite
the above efforts in federated learning, they are based on
volunteer participation. However, without effective incentives,
it is difficult to require participants who are neither necessarily
very capable nor motivated to complete the allocated learning
tasks at a satisfactory level of quality.

B. Incentive Mechanism

A few researchers have proposed some incentive mecha-
nisms for federated learning. Kang et al. proposed an in-
centive mechanism combining reputation with contact theory
to encourage high-reputation nodes to participate in learning
[15]. Pandey et al. proposed an incentive mechanism based
on the Stackelberg game to improve the global model with
communication efficiency [16]. Zhan et al. proposed a deep

reinforcement learning-based incentive mechanism to deter-
mine the optimal pricing strategy for the server and the optimal
training strategies for edge nodes [17]. However, none of them
considers the learning quality of participants, which can bias
the incentive direction. Different from them, we propose an
auction-based quality-aware incentive mechanism for feder-
ated learning, which can facilitate precise user incentive and
model aggregation. Although incentive mechanisms have been
extensively studied in mobile crowdsourcing/crowdsensing
systems [28]–[30] and offloading techniques [31]–[33], they
cannot be directly applied to federated learning due to the
unique characters of federated learning (e.g., learning quality).
Furthermore, rather than an incentive mechanism design alone,
FAIR integrates a quality-aware model aggregation algorithm
to jointly build high-quality federated learning models.

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed FAIR, a novel quality-
aware federated learning system, which can significantly en-
hance the distributed learning quality with precise user incen-
tive and model aggregation. Particularly, we have designed
and implemented three technical components in FAIR: 1)
learning quality estimation, 2) quality-aware incentive mecha-
nism, and 3) model aggregation. In addition, we have theoret-
ically proved FAIR to be truthful, individually rational, and
computationally efficient. Extensive experiments under various
distributed learning scenarios have been carried out, and the
results have demonstrated the efficacy of FAIR in terms of
the user incentive and model aggregation, as well as the
distributed learning. For future work, we will further integrate
the communication and computation performance into FAIR
to enhance its robustness when employed in practical systems.
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