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ABSTRACT
We developed an ultrasonic-based silent speech interface for Virtual
Reality (VR). As more and more customized devices are proposed
to enhance the immersion and experience of VR, our system can be
used to improve the capability of interactions between users and
the systems, while retaining the possibilities of using various cus-
tomized devices and avoiding some limitations of traditional speech
recognition. By employing the channel estimation techniques with
ultrasonic waves, we can derive movement characteristics of users’
lips, which can be used to fine-tune existing speech recognition
models and augmented by vast open-sourced speech datasets. More-
over, we use the speech interface to guide the initialization of cus-
tomized models for new users, so that they can easily have the
access to our system. A two-stage experiment has been conducted
and the results show that our system can achieve 90.8% command-
level accuracy and 1.3% word-error-rate in sentence-level accuracy.
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Tx: inaudible sound

Rx: reflected sound

Figure 1: The usage of CELIP on VR headsets.

1 INTRODUCTION
In recent years, the development of Virtual Reality (VR) technology
endows a host of applications in fields like entertainment, gaming,
education, occupational training, medical operations, etc., which
facilities the growing demand of immersive and realistic VR ex-
periences. From this point of view, researchers developed various
equipment to enable more realistic feedbacks, such as tactile [18],
weight [5], force [30] and haptic [24], etc. To achieve this goal, some
customized hardware, like a bow [30] and hand tools [5, 18, 24], are
designed to simulate such feedbacks. However, on the other hand,
the use of such devices will limit the users’ ability to interact with
the VR system. Different from the conventional game controller,
the customized hardware will increase the immersive and realistic
experiences, but decrease the capability of regular interactions.

Speech Interface (SI) is a natural way to solve the problems.
Previous works confirm the potential of integrating SI with VR
technology [10, 12, 31], which could bring several benefits like
easy-to-use to most class of users and more immersive and enjoy-
able experience. Nevertheless, the implementation of SI in VR may
encounter 4 limitations. First, the presence of voice commands in
VR gaming may be annoying when the users are very engaged in
playing games. Second, the voice recognition performance may
downgrade because of mutual interference when two or more users
are in the same space. Next, due to the needs of gameplay, strategies
and instructions in competitive games should be invisible to the
opponents. Finally, introducing SI in VRmay raise privacy concerns,
because others can easily understand what the users are doing.

To address above issues, we propose CELIP , a Silent Speech In-
terface (SSI) for VR system. As shown in Fig. 1, CELIP actively
emits ultrasonic waves through an ordinary speaker, which then
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(a) Transmitting ultrasonic waves.
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(b) Receiving reflected signals.

Figure 2: Transmitter and receiver design.

are reflected by the user’s lips and received by the microphone. The
user’s lip movements will change the channel states. By estimating
the Channel Impulse Response (CIR) of the received signals, we can
continuously monitor the movement characteristics and further
infer the user’s utterances. Users can interact with VR systems
equipped with CELIP by mouthing their lips instead of vocalizing
the utterances. To illustrate how CELIP works, we designed two
application scenarios. The first scenario is similar to the game as
described in BreathVR [26], which is a competitive game that in-
volves two players facing each other. Each player gets a ball when
it is their turn and then throws the ball at the opposing player. The
goal is to get the ball over the opponent to score. The difference is
that, while the ball is flying towards the opponent, the other player
can manipulate the ball with 2 × 4 × 5 = 40 commands activated by
CELIP , which are the combination of 2 operations, i.e. ‘accelerate’
and ‘decelerate’, 4 directions, i.e. ‘forward’, ‘backward’,‘left’ and
‘right’, and 5 levels, i.e. from 1 to 5. In comparison, BreathVR only
supports 4 simple manipulations due to the limited sensing capabil-
ity. The second scenario is similar to the ordinary voice interaction,
where users use several pre-defined long sentences to interact with
the VR system.

During the development of CELIP , we encountered several chal-
lenges. First, how to achieve sentence-level lip reading and re-
duce the amount of training data in the implementation of CELIP
for VR. Different from the conventional voice recognition task,
ultrasonic-based lip reading has, to the best of our knowledge, no
open source datasets. Therefore, it is challenging to training and tun-
ing a sentence-level recognition network with very limited amount
of training data. Second, since the ultrasonic-based lip reading task
is user diversity [34], how to adapt a model to unseen users with
less effort when they start using CELIP in VR.

To solve the first challenge, we proposed to use movement char-
acteristics called CIR profile, which is a single channel time series
containing the features from the whole bandwidth. Thus, we can
directly fine-tune the open-sourced pre-trained speech recognition
model on our ultrasonic-based dataset to facilitate the model train-
ing and improve the performance. For the next problem, we noticed
that the ultrasonic signal and the speech signal are distributed in
different frequency bands, so we can easily separate them with
conventional digital filters. Therefore, speech recognition system
and CELIP can be running at the same time, so we can use the
speech recognition system to guide the initialization of CELIP for
new users.

Our contributions include:

• To the best of our knowledge, we are the first to use CIR
profile derived from channel states to indicate the movement
characteristics of lips, which is single channel time series
data with real values.

• We draw on model design and numerous data sets in the
field of speech recognition to facilitate the model training
and improve the performance of CELIP .

• We use the speech interface to guide the initialization of
customized model to make users have easier access to the
VR systems equipped with CELIP .

2 METHOD
2.1 Basics of Signal Model and Channel

Estimation
Assume the transmit signal is x[n]. After the acoustic waves passing
through the signal channel, the received signal can be modeled as:

y[n] = h[n] ∗ x[n] (1)

where h[n] denotes the Channel Impulse Response (CIR). The intu-
ition behind CELIP is that lip movements will cause the change of
channel states, which will result in the change of CIR. If we can con-
secutively measure h[n], we can detect the contextual information
of lip movements, then infer the speech utterances.

We can apply Fourier Transform on both side of E.q. 1 and obtain

y[ω] = h[ω] · x[ω]

Generally, because x[ω] has limited bandwidth, we can not directly
divide it to the left side. However, if we multiply the conjugation
of x[ω] on both sides and perform inverse Fourier transform, it is
equivalent to apply circular correlation on the time domain [15].
Then the equation becomes:

Rxy[n] = Rxx[n] ∗ h[n]

where Rxy[n] and Rxx[n] represent the circular cross-correlation of
x[n],y[n] and circular auto-correlation of x[n], x[n]. That is, Rxy[n]
is the convolution of Rxx[n] and the channel state. Moreover, if the
transmit signal has a good auto-correlation property, Rxx[n] is a
sinc function [16] and the convolution of a sinc function and the
channel states can be considered as a good estimation of the true
channel states.
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2.2 Signal Design and CIR Profile Extraction
We choose Zadoff-Chu (ZC) sequence as our training sequence,
because it is widely used in communication systems and is known
to have optimum properties for correlation and channel estima-
tion [25]. The ZC sequence is defined by:

ZC[n] = e−j
πun(n+1)

Nzc

whereu and Nzc is the root and length of ZC sequence, respectively.
In practice, we need to transmit the sequence in inaudible band,
which is normally above 17kHz for adults [29, 32, 34]. Therefore, we
up-sample the ZC sequence with a frequency domain method [28]
to limit the bandwidth to B = 6kHz. Next, we up-convert the signal
to the pass-band by multiplying the carrier signal with a central
frequency fc = 20kHz, before we transmit the signal through a
speaker. By doing so, the frequency of the acoustic waves is in the
range of 17kHz to 23kHz, which is beyond the capability of human
hearing and below the sampling range for most microphones and
speakers. The procedure is show in Fig. 2(b). For the received signal,
we first perform down-conversion to convert it from pass band
to base band, followed by a low pass filter to remove the high
frequency components, as show in Fig. 2(a).

Next, we perform cross-correlation on each period to get the
channel estimation ht [n], where t = {0,T , 2T , . . . }. ht [n] are com-
plex numbers where both the amplitude and phase are crucial to in-
dicate the CIR. Then we compute the different between the adjacent
periods to remove the static components. Thus, we only consider
the changing part of CIR which is caused by the lip movement.
However, complex numbers are not widely adopted in current deep
learning architecture, especially in speech recognition. Hence, we
shift the difference of CIR from [−B

2 ,
B
2 ] to [0,B] in frequency band

by multiplying e jπ Bt . After that, we use the real part as our CIR
profile, denoted by ct [n], which is real valued and contains all the
information about the channel states and the Doppler features. By
concatenating ct [n], we can obtain the feature series c[n] indicating
the movement characteristics of our lips. Fig. 3 shows an example
of a sentence with 7 Chinese characters, which means ‘how’s the
weather today’ in English. Interestingly, the second and the third
characters are the same, but with slightly different stress. Therefore,
the corresponding parts of CIR profile have similar shape, but with
different intensities.

2.3 Utterance Recognition
SoundLip [33] and EchoWhisper [7] proposed that the Doppler
features of ultrasonic sine waves provides the potential for lip read-
ing. They simultaneously monitor the Doppler shift of multiple
sine waves in the inaudible frequency range. As a result, the fea-
tures extracted from the Doppler shifts are composed of multiple
input channels, in which the condition is different from traditional
speech recognition. It means that the improvements in speech
recognition field play a very small role in the evolving of ultrasonic-
based lip reading field, including the model design and numerous
audio datasets for pre-training. Also, Endophasia utilized the 2D-
image profiles extracted from the ultrasonic signals to indicate lip
movements, which borrows some techniques from computer vision
tasks [11] for command-level classification.

! " " # $ % &

Figure 3: An example for CIR profile.

Different from previous ultrasonic-based lip reading works in
recent years, the CIR profile proposed in CELIP is real valued time
series data with only 1 input channel while covering the features
from the whole bandwidth. It shares many similarities with ordi-
nary voice signals and retains all the Doppler features and channel
features used by the previous works. CELIP uses the CIR profile
consecutively measured from the channel states, to indicate the
movement characteristics of users’ lips. It can be classified by a typ-
ical seq2seq model [3] with standard parameter settings in speech
recognition, as well as other classical models [4, 8, 9]. Also, the
models pre-trained on the numerous speech recognition datasets
can be used to reduce the large data size required by [7, 33, 34],
which will bring a lot of manual labor for researchers and users.
Therefore, we use a typical pre-trained LAS model [3] for utterance
recognition, which is composed of a pBLSTM-based listener and
an attention-based speller. Please refer to [3] for more information
about the model structure, parameter settings and training scheme.

2.4 Model Initialization for New Users
As described in Endophasia, the performance of a well-trained
ultrasonic-based lip readingmodel for unseen users has only around
40% accuracy, which is not satisfactory to be applied in actual use.
Therefore, a customized model should be fine-tuned with the data
collected from the target user. However, when we integrate CELIP
to VR systems, we find the data collection procedure for new users
will affect the practicability of the system and reduce the user’s
willingness to use it to a certain extent. Because the voice signal and
the ultrasonic signal are in different frequency bands, we can easily
extract the voice signal and use a mature speech recognition model
to guide the initialization of the customized model. This process
can be automatically completed when the user uses the VR system,
without requiring the user to intentionally go through the data
collection stage. Benefit from the use of CIR profile, collecting three
samples for each utterance can achieve a good performance. When
the number of a certain utterance reaches this standard, we will
automatically update the customized model in the background. In
addition, if the existence of the corresponding utterance in the voice
signal is detected in the subsequent use, we can further strengthen
the robustness of the model.
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Figure 4: The prototype headset integrated with CELIP .

3 EXPERIMENT SETUP
3.1 Prototype Design
We developed a prototype to implement CELIP as shown in Fig. 4.
We designed a 3D printed box to fix a microphone, a speaker and a
power amplifier. Then we connect the microphone and the speaker
to an external sound card and the power amplifier is powered by
a battery. The sound card sends the data stream to the computer
via a USB interface. After that, we stick the 3D printed box on the
HTC Vive headsets. Note that all the components in our prototype
already exist in COTS VR headsets, so that CELIP can be easily
integrated into a headset by changing the position of a mic and
a speaker. For the first scenario, the ball game is set in the 3D
environment downloaded with the Sci-Fi Laboratory Pack 2. For
the second scenario, we simulate the interaction mechanism of
voice recognition in VR operation.

3.2 Experiment Design
A total of 6 subjects participated in our experiments and all of them
are college students in the age from 22 to 26. Our experiments
were conducted in two stages with Mandarin. In the first stage,
the subjects were first invited to play the ball game with ordinary
speech recognition interface in 3 groups, while collecting the CIR
profiles in the background. The game time of each group was about
20minutes. Then, the subjects were asked to read 70 given sentences
according to the prompts, where a total of 37 different words are
contained. Each sentence contains 6.7 words on average and was
read 3 times, and each subject spent around 50 minutes to finish
the task. Note that, during the practical usage, users only need to
collect samples for a few sentences before using CELIP , instead of
finishing all the 70 sentences. Next, we trained a customized model
for each subject with leave-one-user-out scheme. That is, in order
to train a model for a target subject, i.e. the unseen user, we use
the data set from the remaining users to train the model, and use
the data from the target user to fine-tune the model. In the second
stage, the subjects were invited to repeat the tasks in the first stage
with CELIP . Then we count the accuracy of command recognition
in the ball game and report the word error rate (WER) of the long
sentence recognition.

4 RESULTS
4.1 Accuracy of Commands in Scenario 1
For the ball game, a word error will make the entire command have
a completely different meaning, so it is meaningless to calculate the
word error rate in this case. Therefore, we directly record whether
the recognized command is correct. In the second stage of our
experiments, the subjects used a total of 336 commands, of which
the recognition results of 305 commands were consistent with the
subject’s expectations, and the accuracy was around 90.8%.

4.2 WER in Scenario 2
WER is a widely used criterion in the scope of continuous speech
recognition. It measures the minimum operations of substitution,
deletion, and insertion to convert hypothetical sentences into the
reference:

WER =
S + D + I

N
where S is the number of substitutions,D is the number of deletions,
I is the number of insertions, and N is the number of words in the
reference. The average WER over the 6 subjects is 1.3%. The 70
sentences have a total of 469 words, which are repeated for 3 times,
so 1407 of total words are considered for each subject. It means
that, for each subject, only 1407 × 0.013 = 18.2 words need either
substitution, deletion or insertion.

5 RELATEDWORK
Several Silent Speech Interfaces (SSIs) with bulky/invasive sensor
deployment or non-invasive wearable devices have been proposed.
By invasively implanting/placement of sensors in the human body,
researchers have proposed solutions to recognize brain activity in
the voice motor cortex [2], or use intraoral magnetic beads [14] or
capacitive touch sensors [19] to capture the tongue and jaw exer-
cise. The inconvenience caused by these invasive solutions prevents
their applications in VR. In order to provide a more practical and
affordable solution, other studies have designed schemes to recog-
nize speech by using alternative sensors (e.g., EEG [23], sEMG [20],
ultrasound imaging [17]) to detect tongue, facial, throat movements,
and microphones attached to the skin to hear non-audible murmurs
(NAM) [13, 21, 22] or put close to the front of the mouth to capture
whisper-like tiny voice while ingressive breathing [6]. Although
these solutions are non-invasive, they require special sensors to be
installed on the human body. Such schemes will increase the diffi-
culty for users to use the VR devices and reduce their willingness
to use the SSIs.

Some works have proposed the use of camera-based techniques
for developing SSIs, e.g. LipNet [1], Lip-Interact [27], so that no
special sensors are required. However, an additional camera needs
to be installed towards the user’s mouth to capture the user’s lip
movements. Also, the performance of camera-based schemes will
be significantly affected by the lighting condition, when the user’s
mouth is covered by the headsets or when the light in the room
is very dim. In this respect, the microphones and speakers used in
active ultrasonic detection are not sensitive to directivity, and the
cost is very low, and the acoustic waves are not sensitive to the
light condition. Therefore, it has great potential to be applied in the
VR systems to develop SSIs.
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6 CONCLUSION
In this paper, we present CELIP , a sensing technique enabling
silent speech interface in VR systems by utilizing ordinary sensors
equipped in most COTS headsets, i.e. speakers and microphones.
CELIP perceives users’ lip movements by actively emitting ultra-
sonic waves and infer the users’ utterances by analysing the CIR
profile, which is derived from the channel states. As generating
acoustic-based CIR profile requires only a speaker and a micro-
phone, CELIP offers a non-invasive, robust and low-cost approach
to develop silent speech interfaces for VR systems. By using CIR
profile, we can use the conventional speech recognition model and
datasets to facilitate the training stage and improve the perfor-
mance. Also, we use the ordinary speech recognition interfaces to
guide the initialization of customized model to improve the usabil-
ity of CELIP . We designed a prototype of CELIP and conducted a
two-stage experiment. The results show that CELIP can achieve
90.8% command recognition accuracy in the ball game and 1.3%
WER in the long sentence recognition task, while imposing only a
little effort for new users to access the interface.
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