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ABSTRACT

Wireless multicarrier communication systems transmit data by spread-
ing it over multiple subcarriers and are widely used today owing to
their robustness to multipath fading, high spectrum efficiency, and
ease of implementation. In this paper, we use real measurements
to show that there is significant frequency diversity in Wi-Fi chan-
nels, and propose a series of techniques to explicitly harness such
frequency diversity. In particular, we leverage the Channel State
Information (CSI), which captures the SNR on each subcarrier to
(i) map symbols to subcarriers according to their importance, (ii)
effectively recover partially corrupted FEC groups and facilitate
FEC decoding, and (iii) develop MAC-layer FEC to offer differ-
ent degrees of protection to the symbols according to their impor-
tance and error rates at the PHY layer. We further develop a rate
adaptation approach that works together with these optimization
schemes. Our trace-driven simulation and testbed experiments on
USRP clearly demonstrate the effectiveness of our approaches.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless communication

General Terms

Algorithms, Experimentation, Measurement, Performance

Keywords

IEEE 802.11, Forward Error Correction (FEC), Orthorgonal Fre-
quency Division Multiplexing (OFDM), Cross Layer Design, Rate
Adaptation.

1. INTRODUCTION
Wireless multicarrier communication systems, such as Orthog-

onal Frequency Division Multiplexing (OFDM), transmit data by
spreading it over multiple orthogonal subcarriers. Since each in-
dividual subcarrier is narrowband and has slow symbol rate, it is
easy to eliminate inter-symbol interference arising from frequency
selective fading. Owing to its robustness to multipath fading, high
spectrum efficiency, and ease of implementation, OFDM is widely
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used in many wireless systems, such as in digital radio and televi-
sion broadcast, wireless local area networks (e.g., IEEE 802.11a/g/n),
personal area networks (e.g., UWB), and metropolitan area net-
works (e.g., WiMax and LTE).

Due to frequency selective fading and frequency dependent at-
tenuation, it is common for different subcarriers to experience dif-
ferent signal quality [8, 9, 24]. Such signal variation across dif-
ferent frequencies can have fundamental impacts on multicarrier
network performance.

In this paper, we first measure and analyze Channel State Infor-
mation (CSI) of a Wi-Fi channel, which captures the signal to noise
ratio (SNR) on each subcarrier. We observe that there exists signif-
icant frequency diversity and the SNR across different subcarriers
sometimes differs by 10 dB or more. In addition, we find that CSI
is fairly stable and can be predicted with high accuracy using the
Holt-Winters forecast [15]. Moreover, the communication cost of
a receiver’s reporting the CSI to the sender is small. Therefore it is
feasible for a sender to leverage the CSI to optimize its transmission
and increase throughput.

Motivated by these observations, we propose a series of tech-
niques to explicitly harness such frequency diversity:

• Wefirst develop smart symbol interleaving schemes, which map
important symbols to more reliable subcarriers for transmission
in order to maximize the total throughput.

• We then leverage CSI information as hints to perform partial
FEC group recovery and facilitate FEC decoding.

• We further develop a novel MAC-layer FEC scheme to maxi-
mize the throughput by offering different degrees of protection
to the symbols that experience different error rates at the PHY-
layer and have different importance.

• Finally, we observe that our techniques can effectively reduce
the perceived loss rate and potentially support a higher data rate.
Therefore we develop a rate adaptation scheme that works to-
gether with the above optimization techniques.

We evaluate our approaches using both trace-driven simulation
and testbed experiments in USRP [29]. Our results clearly demon-
strate the benefit of our approaches. In particular, our results show
that the smart symbol mapping, CSI-based hints, and MAC-layer
FEC can each improve the throughput by 120% to 1580%, 26%
to 91%, and 7% to 207%, respectively. Moreover, there exists syn-
ergy between these techniques, and leveraging them together yields
higher throughput gain. In addition, our rate adaptation can effec-
tively take advantage of these techniques, and improve throughput
by 33% to 147% over the traditional rate adaptation.

The rest of the paper is organized as follows. We analyze the
CSI traces collected in static and mobile networks in Section 2. We



present our approach in Section 3. We describe our trace-driven
simulation methodology and results in Section 4. We present our
implementation and testbed results in Section 5. We survey the
related work in Section 6. We conclude in Section 7.

2. ANALYSIS OF CSI TRACES

Background: According to the IEEE 802.11n standard, the net-
work interface cards (NICs) report a standard Channel State In-
formation (CSI). The CSI is a collection of M × N matrices Hs,
each of which specifies amplitude and phase between pairs of N
transmit and M receive antennas on subcarrier s. SNR and ampli-
tude A have the following relationship: SNR = 10log10(A

2/N),
where N denotes the average power of white noise. We use Intel
Wi-Fi Link 5300 (iwl5300) IEEE a/b/g/n wireless network adapters
to collect the CSI of each frame preamble across all subcarriers.
These NICs have three antennas. We enable all three antennas at the
receivers and one antenna at the sender. The modified driver [12]
reports the channel matrices for 30 subcarrier groups, which is
about one group for every two subcarriers in a 20 MHz channel
according to the standard [2] (i.e., 4 groups have one subcarrier
each, and the other 26 groups have two subcarriers each). All the
measurements are conducted in 5 GHz channel 36 to avoid interfer-
ence with the campus Wi-Fi networks. We use 1000-byte packets,
MCS 0, a transmission power of 15 dBm. MCS 0 has 1 stream, so
the NICs report CSI in the form of 1 × 3 matrices for each frame.

Trace collection: We collected CSI traces on the sixth floor of the
ACES building at The University of Texas at Austin. It is a regular
office building with student cubicles across the floor. Every node
is a desktop equipped with the Intel Wi-Fi Link 5300 (iwl5300)
adapter. For the static traces, we let a sender placed at one cubicle
broadcast traffic, and let five receivers spread across different cubi-
cles record the CSI of the received frames for an hour. Each trace
contains about 2,500,000 packets. We use the first 100,000 pack-
ets in all of our analysis. In addition, we collected a mobile trace
by having one sender broadcast to four receivers placed at different
cubicles. We walked with the sender at an approximate speed of 10
meters in half a minute (i.e., about 1.2 kmph). Each mobile trace
contains around 20,000 packets and we use all the packets for our
analysis. Throughout this paper, we refer to the five static traces as
traces 1 to 5, and refer to the four mobile traces as traces 6 to 9.

Frequency diversity: We first use the CSI measurements to show
that there exists significant frequency diversity. For each received
frame, we compute the difference between minimum and maxi-
mum SNR across different subcarriers in a 20MHz 802.11 channel.
Figure 1 plots the cumulative distribution (CDF) of the difference
over 5 sender-receiver pairs in the static traces. Each node pair con-
sists of three links because there are three antennas at the receivers,
effectively giving us 15 links in total. We make the following ob-
servations. First, all the links exhibit significant signal variation
across different frequencies. Several links often see over 10 dB dif-
ference across different frequencies. Second, as we would expect,
the degree of frequency diversity varies across the links: the differ-
ence between the minimum and maximum SNR varies from 3.6 to
5.7 dB on some links, and from 9.8 to 32.4 dB on other links.

Next we analyze the mobile traces, and plot the CDF of the
difference between maximum and minimum SNR across different
subcarriers in Figure 2. There are effectively 4× 3 = 12 measured
links. As before, we observe that all links exhibit significant fre-
quency variation, and the difference between maximum and mini-
mum SNR even for the link with minimum variation is more than
8.3 dB for 50% of the packets.

Note that the frequency diversity exists not only in single an-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35

Difference between min & max per subcarrier SNR (in dB)

F
ra

c
ti
o

n
 o

f 
p

a
c
k
e

ts

Figure 1: Heterogeneity in the signals across different frequen-

cies within a 20 MHz 802.11 static channel.

tenna cases (as shown in the above analysis results) but also in
multiple antenna cases. For example, the frequency diversity seen
by a MIMO receiver is the same as the diversity on its individual
antennas when it uses spatial multiplexing since each antenna is
responsible for receiving one stream. These measurement results
motivate us to develop techniques to exploit such frequency diver-
sity in Wi-Fi networks.
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Figure 2: Heterogeneity in the signals across different frequen-

cies within a 20 MHz 802.11 mobile channel.

Temporal stability: In order to effectively exploit such frequency
diversity, the CSI should be relatively stable over time so that we
can predict the future CSI using the past measurements. We quan-
tify the temporal stability by computing the normalized amplitude
change, defined as follows:

‖A(t1) − A(t2)‖2

‖A(t2)‖2
,

where A(t1) and A(t2) are the amplitudes of the two consecu-
tive packets on all the subcarriers, and ‖ · ‖2 is the ℓ2-norm (with
‖~z‖2 =

p

P

k
~z(k)2 for any vector ~z). Figure 3 plots the CDF of

normalized amplitude change for the static traces. As we can see,
for most traces, over 94% of cases amplitude changes within 10%
between two consecutive packets.

Figure 4 plots the CDF of the amplitude change between two
consecutive packets in the mobile traces. As we see, the amplitude
changes within 20% in 92.1% of cases.

We further study the temporal stability as we vary the gap be-
tween the packets. Figure 5 plots CDF of the relative difference
between the CSI of the two packets with sequence numbers t1 and
t1 + gap, i.e.,

‖A(t1) − A(t1 + gap)‖2

‖A(t1 + gap)‖2
,

where gap varies from 1 to 10. In the static trace, the difference is
similar with different gaps between the two packets, which suggests
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Figure 3: Temporal stability of CSI in the static traces.
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Figure 4: Temporal stability of the CSI in the mobile traces.

that CSI fluctuates randomly. In the mobile trace, the difference in-
creases with the gap; but even when the gap increases to 10, the
difference is still within 16% for 50% of the frames. We observe
similar results for the other traces. The significant temporal stabil-
ity in the CSI suggests that it is possible for us to predict the future
CSI using the historical measurements and optimize performance
based on predicted CSI.

CSI prediction: Next we examine the prediction algorithms for
CSI. We observe that in the static traces the CSI fluctuation tends
to be random, whereas in the mobile traces the CSI has a linear
trend (e.g., when the sender is moving away from or towards the
receivers) in addition to random fluctuation. Therefore, in general,
the CSI series consist of two components: a baseline and a lin-
ear trend. To account for these two components, we use the Holt-
Winters forecasting algorithm [15] to predict CSI. Let y denote the
CSI time series on a given subcarrier. y consists of a baseline com-
ponent a and a linear trend component b, both of which are esti-
mated using exponential weighted moving average (EWMA). Then
the future sample, denoted as y(i+1), can be predicted as follows,
where α and β are the weights we put on the most recent sample.
Our evaluation uses α = 0.2 and β = 0.1.

a(i) = α × y(i) + (1 − α) × (a(i − 1) + b(i − 1))

b(i) = β × (a(i) − a(i − 1)) + (1 − β) × b(i − 1)

y(i + 1) = a(i) + b(i)

Figure 6 plots the prediction error in static and mobile traces. For
comparison, we also plot the prediction error of EWMA, which es-
timates the future sample y(i + 1) as αx(i) + (1 − α)y(i), where
x(i) is the actual value of i-th sample and y(i) is the predicted
value of i-th sample. As we would expect, for EWMA, small α
performs better in the static traces, and large α performs better in
the mobile traces. Therefore choosing an appropriate α a priori
in EWMA is difficult. In comparison, the Holt-Winters forecast-
ing with the same α and β performs comparably to or better than
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(b) Mobile: trace 6

Figure 5: Changes in CSI with a varying time gap.
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Figure 6: Prediction error of CSI in both the static and mobile

traces.

the EWMA scheme using the best configuration on both static and
mobile traces. This is because it decomposes the time series into
two components and separately keeps track of the baseline and the
linear trend using the same parameters. Instead of changing the
parameters, the linear trend component captures the degree of the



mobility and increases with mobility. Due to the effectiveness and
generality of the Holt-Winters algorithm, we use it for prediction
throughout the rest of this paper.

Cost of updating CSI information: A receiver needs to feedback
CSI information to its sender so that the sender can use it to opti-
mize its strategy for future transmissions. Simply sending the raw
CSI information (e.g., amplitude) for every frame can be costly. To
reduce overhead, it is natural to use delta compression to send the
amplitude change between two consecutive packets. We find the
maximum amplitude change from one packet to the next is well
below 64 and can be safely represented using 6 bits for each sub-
carrier. Since the driver reports CSI as a vector of size 30 from
each antenna, the standard delta compression requires 30x6 = 180
bits. We use the following enhancement to further reduce the up-
date cost. When the change is within K, we send it using log2(K)
bits; when the change is above K, we send the change using 6 bits.
We use a binary indicator to denote which mode we use for each
subcarrier (i.e., whether using log2(K) or 6 bits).

Figure 7 shows the average update cost for every packet across
the entire static and mobile traces as we vary K. The update cost
includes the cost of the indicators. As it shows, the cost is lowest
when K = 2 or 3. At these values, the CSI is around 100-120
bits per antenna, which is easily affordable. For example, even
at the lowest data rate of one antenna (6.5 Mbps), the ACK time
increases within 24%; at the highest data rate of one stream (65
Mbps), the ACK increases within 4.5%. Since ACK transmission
time is a small portion of the data transmission time, this overhead
is within 1% even at the lowest data rate for 1500-byte data frames.
Furthermore, we find that decreasing the CSI update frequency by
half has negligible impact on the performance due to significant
stability. This suggests that CSI information can be available at
low cost so that we can use it to optimize future transmissions.
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Figure 7: Cost of updating CSI in the static and mobile traces.

3. OUR APPROACH
Motivated by the significant frequency diversity within a chan-

nel, we develop a series of techniques to harness such diversity and
improve throughput.

3.1 Smart Symbol Interleaving

Standard interleaver: According to IEEE 802.11 standard, all
data bits are interleaved by a block interleaver with a block size
corresponding to the number of bits in one OFDM symbol [11,
1]. Let NCBPS denote the block size. The block interleaver is a
two-step permutation procedure. The first permutation step maps
adjacent coded bits to non-adjacent subcarriers. The second per-
mutation maps adjacent coded bits alternatively to less and more
significant bits of the constellation to avoid long runs of low relia-
bility bits. Let k denote the index of the coded bit before the first
permutation, i denote the index after the first permutation, and j de-
note the index after the second permutation. The two permutation
steps are defined as follows, where k = 0, 1, ..., NCBPS − 1, i =
0, 1, ..., NCBPS − 1, and s is determined by the number of coded
bits per subcarrier (NBPSC ) according to s = max(NBPSC/2, 1).

i = (NCBPS/16)(k mod 16) + floor(k/16) (1)

j = s × floor(i/s) + (i + NCBPS − floor(16 × i/NCBPS )) mod s
(2)

Smart interleavers: The goal of the standard interleaver is to avoid
long runs of low reliability bits by spreading adjacent bits apart
to reduce correlated losses. However, they do not consider that
different subcarriers can experience very different loss rates and
different symbols can have different importance. Smart interleavers
incorporate both frequency diversity and importance of symbols.
Here are a few examples where different bits within a frame may
have different importance:

• A packet header is more important than payload.

• When a systematic code is used (e.g., Reed-Solomon code, sys-
tematic convolutional code, and standard LDPC), the original
data symbols are transmitted along with redundancy symbols
and the former are more important because they can be decoded
once they are received correctly, whereas the latter are only use-
ful when enough symbols in the FEC group are received. For
example, consider a systematic FEC group that consists of 5
data symbols and 5 redundancy symbols. Correct reception of
4 data symbols alone leads to 4 symbols worth of throughput
(when we use CSI as hints in Section 3.2), whereas correct re-
ception of 4 redundancy symbols alone is useless.

• When transmitting an image or video, symbols corresponding
to the main object in the scene are more important than the
symbols pertaining to the surrounding background.

Based on this observation, we propose to map important sym-
bols to reliable subcarriers. Our design focuses on interleaving for
the first two scenarios, though our general techniques can be eas-
ily extended to other contexts. In order to support such mapping
schemes, we require cross layer information (e.g., location of the
header in a frame). This can be achieved by having the upper layer
mark the bits in a frame that require higher level of protection.

The idea of mapping important symbols to reliable subcarriers is
natural, but the challenge lies in how to map symbols to subcarriers
in order to maximize the total throughput. Before delving into the
detailed approaches, we first formally specify the problem. Given
a set of subcarriers and the loss rate of each subcarrier, we want to



determine the symbol to subcarrier mapping that maximizes the ex-
pected received payload, defined as Pheader×N , where Pheader is
the delivery rate of a header and N is expected number of delivered
payload data symbols. The mapping should specify for each FEC
group, which subcarriers are used to transmit data symbols for the
header, data symbols for the payload, and redundancy symbols for
the header and payload.

Due to the non-linear utility function, finding the optimal solu-
tion to this mapping problem is challenging. We develop several
heuristics. Our first three heuristics are based on the insights that
header symbols and data symbols are generally more important.

• Smart header: It divides symbols into two groups: header
symbols and payload symbols. It maps header symbols to
the most reliable subcarriers and maps payload symbols to
the remaining subcarriers.

• Smart data: It divides symbols into two groups: data symbols
and FEC redundancy symbols. It maps data symbols to the
most reliable subcarriers and maps redundancy symbols to
the remaining subcarriers.

• Smart header/data: It sorts the subcarriers in an increasing
order of their SNR, and partitions them into four groups: (i)
data symbols in the header, (ii) data symbols in the payload,
(iii) redundancy symbols in the header, and (iv) redundancy
symbols in the payload. Let n1, n2, n3, n4 denote their
sizes in a frame, respectively. Then we map (i) to the best
n1 subcarriers in terms of SNR, map (ii) to the next best n2
subcarriers, map (iii) to the following top n3 subcarriers, and
map (iv) to the remaining subcarriers.

Since the above three heuristics do not provide optimal perfor-
mance, we develop the following smart iterative search to further
improve the performance. We first use the above three smart map-
ping schemes to derive three initial mappings. Then, for each initial
mapping, we try to iteratively improve upon it as follows. We swap
K symbols from one FEC group with another FEC group. If the
swap leads to an increase in the utility, we accept it; otherwise,
we ignore it. In both cases, we iterate until the maximum number
of iterations is reached. Our evaluation uses 5 iterations. Finally,
among the three refined mappings, we pick the one that yields the
best performance.

It is important to determine which two FEC groups to swap. Our
intuition is that allocating reliable subcarriers to an FEC group with
low delivery rate can be more beneficial than allocating them to an
already highly reliable FEC group. Therefore, during each itera-
tion, we sort the FEC groups in the order of their delivery rates and
randomly swap the subcarriers between the best and worst FEC
groups in terms of their delivery rates. One caveat is that when the
best FEC group involves a header, swapping its subcarriers with
less reliable ones may degrade the performance due to a higher
header corruption rate. Therefore, in that case, we compute the
utility of two scenarios: either swap the group involving the header
with the worst FEC group or swap the next best FEC group (which
does not contain a header) with the worst FEC group. We will take
the swapping that gives a higher utility.

In all four smart interleaving schemes, to avoid long runs of erro-
neous bits within each of these partitions (which contains the sym-
bols of the same priority), we apply a similar permutation step as
Equation 1 to spread the adjacent bits apart. In this way, we not
only provide prioritized treatments to important bits but also avoid
long runs of low reliability bits.

Receiver feedback: To allow a receiver to properly decode a frame,
the receiver has to know the exact interleaving used at the sender.

This can be either explicitly transmitted by the sender or implic-
itly computed by the receiver. We take the latter approach due to its
lower communication overhead. The receiver reports the CSI infor-
mation in the ACK. Based on the CSI information, the sender and
receiver will run the same interleaving algorithm and use the same
permutation step so that they should arrive at the same interleav-
ing. The only information that the sender needs to communicate
is which CSI the sender uses to compute the interleaving. This is
simply the sequence number of the ACK, which includes the CSI
used for computing the interleaving. Such sequence number could
be represented using a small number of bits without ambiguity.

3.2 Leveraging Channel Information for FEC
decoding

Next we propose to use CSI to facilitate decoding in the follow-
ing two ways: (i) help recover the data symbols when its FEC group
cannot be completely decoded, and (ii) improve FEC recovery ca-
pability by knowing the likely error positions.

Recovering partial FEC groups: Specifically, if an FEC group
fails (i.e., whose errors exceeds a threshold), the current decoder
cannot extract any symbols from the failed group. In comparison,
we can use SNR of the subcarrier, on which the symbols are trans-
mitted, and extract the data symbols whose SNR exceeds a thresh-
old. In our evaluation, we set the SNR threshold to correspond to
0.1% BER under the current modulation scheme. In this way, we
can perform partial FEC group recovery. The benefit of using CSI
over existing approaches (e.g., SoftPHY [14]) is that CSI is avail-
able even in commodity hardware, which we can immediately ben-
efit, whereas SoftPHY hints are only available in software-defined
radios. For those bits that fail the CSI check, we may request for
retransmissions as PPR [14]. The frame is considered successfully
delivered only if it passes the frame CRC check after retransmis-
sion(s). In this way, we do not compromise integrity of the frame.

Improving FEC group recovery: In addition to partial recovery,
CSI information is useful to increasing the FEC group recovery
probability. For example, a LDPC code is widely used in wire-
less systems, such as IEEE 802.11n, WiMax, and LTE. It uses the
channel information to decode an FEC group. In a nutshell, LDPC
uses several parity checks to perform error detection and recovery.
When the received symbols in an FEC group fail one or multiple of
the parity checks, the LDPC decoder will flip symbols within the
group according to the error probability of the symbols and then
use parity bits to check the consistency of the new FEC group. The
flips will continue until the symbols pass all the parity checks in
that group or the number of flips exceed a threshold. An accurate
estimation of the error probability for the symbols is important to
the decoding success. As shown in Section 4.2, using the error
probability calculated based on the CSI information can consid-
erably increase the LDPC decoding success rate over the current
practice, which assumes uniform error probability. Given the in-
creasing popularity of LDPC codes, our enhancement has signif-
icant practical value. Moreover, such benefit can potentially also
extend to other FEC schemes, e.g., Reed Solomon, where we can
also flip bits according to their error probability in a Reed Solomon
FEC group until they pass the consistency check. The main differ-
ence is that LDPC checks consistency using parity checks, which is
much more efficient than the consistency check in Reed Solomon.
As a result, the latter is applicable only to a wireless network with
a relatively low data rate.

3.3 MAC-layer FEC
Due to frequency diversity, there may not exist a single PHY-

layer data rate that works best for all the subcarriers. One way



to handle such heterogeneous subcarrier quality is to use differ-
ent modulation and PHY-layer FEC on each subcarrier (e.g., as in
[24]). However, this may require mapping the symbols within a
PHY FEC group onto the same subcarrier, since different subcar-
riers may simply use different FEC codes. This requirement can
lead to undesirable bursty losses. Moreover, commodity hardware
(e.g., Wi-Fi cards) does not have the flexibility in controlling mod-
ulation at the per-subcarrier level, and can only select the data rate
for the entire frame. Furthermore, frequency-aware rate adaptation
also introduces significant signaling and processing overhead [27].

We propose to use MAC-layer FEC to offer different degrees
of protection to effectively maximize the total throughput. MAC-
layer FEC has several advantages: (i) it is flexible and can offer
different levels of protection to different symbols based on their
importance and PHY-layer loss rates, (ii) it is more fine-grained
than PHY-layer FEC: it allows us to use not only different FEC
group sizes but also any FEC redundancy level instead of being
constrained by the limited choices offered at the PHY layer, e.g.,
IEEE 802.11a offers only 1/2 (half data symbols in an FEC group),
3/4 (3/4 data symbols in an FEC group), and 2/3 FEC while IEEE
802.11n offers 1/2, 3/4, 2/3, 5/6 FEC at the PHY-layer; (iii) it can
be easily deployed on commodity hardware.

Problem formulation: Our goal is to maximize the throughput
by selectively adding MAC-layer FEC. The approach can be easily
extended to offer differentiated treatment to FEC groups if certain
groups are more important than others (e.g., header vs. payload).
Here we consider that the data rate and bit interleaving informa-
tion are given. In Section 3.4, we will relax this assumption and
jointly optimize rate, bit interleaving, partial recovery, and MAC-
layer FEC.We consider Reed Solomon FEC code at theMAC layer.
It consists of K data symbols and N − K redundancy symbols. A
group is correctly received if there are no more than (N − K)/2
incorrect symbols.

This problem has a large search space: (i) how much MAC-layer
FEC to add, (ii) how to split these FEC symbols to protect different
PHY-layer symbols, and (iii) what FEC group size to use at the
MAC layer. To limit the search space, we partition the PHY-layer
symbols in each FEC group into two groups: good symbols with
low BER and bad symbols with high BER. Let dg and db denote
the number of good and bad PHY-layer symbols, respectively. Our
problem is to decide how to split the PHY-layer symbols into these
two groups and how many MAC-layer FEC symbols to allocate to
protect each of these two groups. Let r denote the total number of
MAC-layer FEC symbols we will add. Let rg and rb denote the
number of MAC-layer FEC symbols allocated to protect good and
bad PHY symbols, respectively. Obviously, r = rg + rb. Our goal
is to find (db, rb, rg) that maximizes throughput.

Algorithm: To achieve this goal, for every FEC group in a frame,
we search for the best combination of (db, rb, rg) such that it max-
imizes the effective delivery rate, defined as the expected number
of delivered symbols (Nr) divided by the total number of symbols
transmitted (Nt), which includes MAC-layer FEC symbols. Fig-
ure 8 shows the pseudo-code. The transmitter will then add the
MAC-layer FEC for each PHY-layer FEC according to configmax

as calculated. In this case, the sender does not need to notify
the receiver of the MAC-layer FEC it uses. This is because both
the sender and the receiver operate on the same CSI information
and run the same algorithm which is deterministic in nature. This
avoids communication overhead that might otherwise be needed.
Furthermore, to minimize the correlated losses within one MAC-
layer FEC group, we use the hash function in Equation 1 to map
adjacent FEC symbols to different subcarriers. Since the sender

foreach PHY-layer FEC group
foreach (db, rb, rg)

compute Rg = Nr/Nt

ifRg > Rmax
g

Rmax
g = R

configmax
g = (db, rb, rg)

end
end

end

Figure 8: Pseudo code of MAC-layer FEC.

and receiver use the same hash function, no additional information
about the mapping needs to be transmitted.

The algorithm maximizes the utilityNr/Nt for each FEC group.
Nt is simply d + rg + rb. Below we describe how to compute
Nr . For a given (db, rb, rg), we estimate the expected number of
successfully delivered data symbols without partial FEC recovery
(i.e., the technique described in Section 3.2) as follows:

Nr =P1 × d1 + (1 − P1) × P2g × dg + (1 − P1) × P2b × db

(3)

where P1 denotes the delivery probability of the FEC group us-
ing PHY-layer FEC, P2g and P2b are the delivery probabilities of
the FEC group using MAC-layer FEC for the good and bad FEC
groups, respectively, and d1 is the number of data symbols in the
group. The expression assumes independence between delivery
probabilities of PHY-layer FEC and MAC-layer FEC. The group
is delivered when either of these FEC groups succeeds.

When partial FEC recovery is enabled as described in Section 3.2,
the expected number of successfully delivered data symbols in-
creases to the following:

Nr =P1 × d1 + (1 − P1) × P2g × dg + (1 − P1) × P2b × db

(1 − P1) × (1 − P2) × (
X

i∈bad

P3i +
X

i∈good

P3i) (4)

where P3i is the delivery probability of the i-th symbol that be-
longs to either a good or bad group. The expression reflects the fact
that a symbol is received if (i) its PHY-layer FEC group is correctly
received, or (ii) its MAC-layer FEC group is correctly received (but
its PHY-layer FEC group is incorrect), or (iii) the symbol itself is
correctly received (but its PHY-layer and MAC-layer FEC groups
are both incorrect). Among these variables, P3i can be easily com-
puted from the CSI using SNR to BER mapping. Below we focus
on computing P1 and P2, both of which are the delivery probabil-
ity of one FEC group.

Computing the delivery probability of one FEC group: The de-
livery probability of one FEC group is essentially the probability of
the FEC group having no more than T errors, where T is the max-
imum number of errors that the FEC group can tolerate. This can
be approximated using a normal distribution. Since an FEC group
typically contains around or over 100 symbols, the approximation
using a normal distribution works well according to the law of large
numbers. This is also confirmed in our evaluation, which shows its
estimation is quite close to the actual delivery rate.

Specifically, let BERi denote the BER of the subcarrier i and
I is the set of subcarriers used to carry symbols in the current
FEC group. X(i) denotes if the bit i is corrupted and define Y =
P

i∈I
X(i), which denotes the expected number of corrupted bits

in the FEC group. We can approximate Y as N(µ, σ), where

µ =
P

i∈I
BERi and σ =

q

P

i∈g
BERi(1 − BERi). Then

the delivery probability of an FEC group can be approximated as



θ(T−µ

σ
), where θ(x) is the CDF of the standard normal distribution

N(0, 1).

3.4 Combining with Rate Adaptation
The above three optimization techniques reduce the perceived

loss rate and can potentially support a higher data rate. Motivated
by this observation, below we first describe how to jointly optimize
rate adaptation with smart symbol interleaving and then show how
it can be extended to also leverage partial FEC group recovery and
MAC-layer FEC.

Joint rate adaptation and smart interleaving: To jointly opti-
mize rate adaptation and smart symbol interleaving, we enumerate
all data rates, and for each data rate we identify the best symbol
interleaving based on the CSI information. Then we select the data
rate and symbol mapping that maximize the total throughput.

To achieve this goal, we need to accurately estimate the through-
put for a given symbol interleaving and data rate. We compute
throughput as the expected number of correctly received symbols in
the payload data divided by the transmission time TxT ime, which
includes DIFS, SIFS, header and ACK overhead. The denomina-
tor is easy to compute, so we focus on computing the numerator.
We observe that a data symbol s is successfully received if (i) the
header is correctly received and (ii) the FEC group to which s be-
longs is received correctly. Therefore, we first compute the delivery
probability of an individual FEC group, and then compute the ex-
pected number of received symbols as follows:

Pheader ·
X

K

PF EC(K)dK ,

where Pheader denotes the header delivery probability, PF EC(K)

denotes the FEC group K’s delivery probability, and dK denotes
the number of data symbols in the FEC group K.

Pheader can be computed as follows:
Y

i∈header

BERi + (1 −
Y

i∈header

BERi)PF EC′ ,

since the header is received either when all bits in the header are
correctly received (which can be verified using a header CRC) or
when the FEC group to which the header belongs is correctly re-
ceived, which is denoted by PF EC′ . We can compute the prob-
ability of an FEC group having within T errors (e.g., PF EC(K)

and PF EC′ ), by approximating it using a normal distribution, as
described in Section 3.3.

Joint rate adaptation, smart interleaving, and partial FEC re-

covery: To further incorporate partial group recovery based on the
CSI hints, we simply redefine the throughput by including the par-
tially correct symbols in the FEC group K as follows:

Nr = (Pheader ·

X

K

(PF EC(K)dK + (1 − PF EC(K))
X

i∈K

(1 − BERi)))

(5)

Throughput = Nr/TxT ime (6)

where the term (1 − PF EC(K))
P

i∈K
(1 − BERi) denotes the

total number of partially correct symbols in the FEC group K. The
intuition is that a data symbol s is received if (i) the header is re-
ceived correctly, and (ii) the FEC group to which s belongs is re-
ceived correctly or s is received correctly.

Joint rate adaptation, smart interleaving, partial FEC recov-

ery, and MAC FEC: We extend our algorithm in Figure 8 to Fig-
ure 9 to support rate adaptation, smart interleaving, partial FEC
recovery, and MAC FEC. It searches over all data rates, and for

foreach data rate
use smart mapping to select a good symbol mapping
foreach PHY-layer FEC group

foreach (db, rb, rg)
compute Rg = Nr/Nt

ifRg > Rmax
g

Rmax
g = R

configmax
g = (db, rb, rg)

end
end

end
compute TxT ime under the current rate and MAC FEC
utility = Pheader ×

P

g
Rmax

g /TxT ime;

if utility > max_utility
max_utility = utility;
record the current rate and configmax

g

end
end

Figure 9: Pseudo code of MAC-layer FEC.

each data rate it finds the symbol mapping and MAC-layer FEC
that maximizes the total throughput. The new utility effectively
captures the impact of data rate, interleaver, partially correct FEC
groups, and MAC-layer FEC overhead. It finally selects the com-
bination of rate, symbol mapping, MAC-layer FEC that yields the
highest throughput. For efficiency, we do not have to go through
all the data rates during the search, and can prune a data rate if its
throughput under no losses is no larger than the highest throughput
found so far.

4. SIMULATION

4.1 Simulation Methodology
We conduct extensive trace driven simulations to study the ben-

efit of our approaches. We collect CSI traces as described in Sec-
tion 2 using Intel Wi-Fi Link 5300 (iwl5300) IEEE 802.11 a/b/g/n
wireless network adapters on desktops. These NICs have three an-
tennas and we use the trace from the first antenna in the following
results since we observe similar results when using the other two
antennas. For the static traces, we use the first 20, 000 packets from
each trace for simulation, and these packets correspond to about
half a minute transfer. For the mobile traces, we only have about
20, 000 packets per trace, so we use all the packets for simulation.

We develop an event-driven simulator as follows. A sender con-
tinuously transmits frames to a receiver. The symbols within a
frame are mapped to subcarriers according to a given mapping
scheme. The corruption rate of a symbol is determined according to
the SNR of its subcarrier and the standard function that maps SNR
to bit-error-rate (BER), as shown in Table 2 of [9] and also vali-
dated empirically in that paper. The sender optimizes its strategy,
such as symbol mapping and MAC-layer FEC, according to the
predicted CSI using the Holt-Winters forecasting algorithm. We
use throughput as our performance metric. Throughput is defined
as the total number of correctly received bits divided by the to-
tal time, which includes the transmission time and random backoff
time. When CSI is used to extract partially correct symbols, the
throughput only counts the symbols that are both correct and have
CSI above the threshold.

In order to quantify the benefit of any loss recovery schemes, we
have to use traces with packet losses. However, CSI information of
lost packets are simply not available since the driver may not even
know the presence of a packet. Therefore we collect the CSI traces



under good link conditions where it has little or no packet losses.
Then we shift the original CSI as reported by the traces by a con-
stant across all the subcarriers to emulate the effect that the sender
uses a lower transmission power or is farther away so that the link
experiences losses. The shift is constant across all the subcarriers
so that it preserves the frequency diversity in the original traces.
We identify the shift based on the modulation scheme so that the
modulation scheme is appropriate for the current shift value.

We evaluate the performance under fixed rate and auto-rate. We
use the static traces to evaluate the fixed rate, and use both the static
and mobile traces to evaluate the performance of auto-rate. We do
not use the mobile traces to evaluate the fixed rate case since the
SNR varies significantly and it does not make sense to use a fixed
rate throughout the entire duration of mobile traces.

4.2 Performance Results
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Figure 10: Comparison of different symbol mapping schemes

under fixed rates in the static trace.

Evaluation of symbol mappings: Figure 10 compares the per-
formance of our four smart mapping schemes with the standard
mapping used in IEEE 802.11 [1, 11]. As shown in Figure 10, all

four smart mapping schemes consistently out-perform the standard
mapping. The improvement of smart iterative search over the stan-
dard mapping ranges from 120% to 1580% in BPSK 1/2 FEC (i.e.,
half of the symbols in an FEC group are data symbols), 460% to
3190% in QPSK 1/2 FEC, and 63% to 410% in QPSK 3/4 FEC
(i.e., 3/4 of the symbols in an FEC group are data symbols). Com-
paring the four smart mapping schemes, we see that smart iterative
search consistently performs the best.
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Figure 11: Comparison of CSI-based hints under fixed rates in

the static trace.

Evaluation of CSI-based hints: Figure 11 evaluates all the map-
ping schemes with partial recovery using CSI as hints. Comparing
Figure 10 and Figure 11, we see that the CSI-based hints signifi-
cantly improve the throughput of all mapping schemes. In BPSK
1/2 FEC, it improves throughput from 73% to 84% in the standard
mapping, from 230% to 750% in the smart header mapping, from
150% to 650% in the smart data mapping, from 180% to 530%
in the smart header/data mapping, and from 150% to 420% in the
smart iterative search. The benefits of CSI hints are higher in the
smart mapping schemes than those in the standard mapping for the
following reason. The smart mappings allocate data symbols to



more reliable subcarriers so that they are more likely to be correct
and whenever they are correct, the CSI hints allow us to extract
the data symbols, which directly contributes to the throughput. In
comparison, applying the CSI hints to the standard mapping yields
lower throughput because while the CSI hints continue to allow us
to extract correct symbols but a larger number of these symbols are
redundancy symbols, which by themselves are not useful unless the
FEC group receives enough correct symbols.

In addition, we observe that the smart iterative search with CSI
hints improves the throughput of the default scheme (i.e., the stan-
dard mapping without CSI hints) by 440% to 8630%, which is
higher than the individual technique alone. This demonstrates the
synergy between these techniques.

Next we use CSI to estimate the error probability in LDPC. Our
result based on the static traces shows that this allows an LDPC
using 273-bit codeword and 191-bit redundancy to successfully de-
code 20.2% more FEC groups than the current practice, which as-
sumes uniform error probability.
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Figure 12: Evaluation of MAC FEC under the fixed rate

(BPSK, 1/2 FEC) in the static traces.

Evaluation of MAC FEC: Figure 12 compares the performance
with and without MAC FEC. As we can see, in the standard map-
ping, MAC FEC improves the total throughput by 7% to 207%
when CSI are not used as hints, and improves throughput by 15%
to 549% when CSI are used as hints.

Evaluation of the joint optimization: As shown in Figure 12,
MAC FEC with smart iterative mapping and CSI hints improves
the throughput of the default scheme (i.e., no MAC FEC, no CSI
hints, and standard mapping) by 160% to 660% , even higher than
the benefit of individual technique alone, which confirms that the
techniques work well together.
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Figure 13: Comparison of different symbol mapping schemes

under auto rates in the static traces.

Effects of our rate adaptation: We further evaluate the effective-
ness of jointly optimizing data rate and symbol mapping. We com-
pare rate adaptation using the smart mapping schemes against the

standard mapping. In both cases, we use the same auto-rate adap-
tation as described in Section 3.4, which selects the rate that maxi-
mizes throughput. They only differ in the way in which the symbols
are mapped. As shown in Figure 13, jointly optimizing rate adapta-
tion and symbol mapping out-performs the standard mapping with
auto-rate. The throughput benefit ranges from 15% to 44% in the
smart iterative search.

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

trace 6 trace 7 trace 8 trace 9

T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

standard
header

data
header/data

iterative

Figure 14: Comparison of different symbol mapping schemes

under auto rates in the mobile traces.

Next we evaluate the performance of different mapping schemes
under auto-rate on the mobile trace. This is more challenging since
the prediction accuracy degrades under mobility and we may not
accurately identify good subcarriers. As shown in Figure 14, all
four smart mapping schemes continue to improve the throughput
in the mobile traces. The improvement over the standard mapping
ranges between 6.9% to 10.3% in the smart iterative search.
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Figure 15: Comparison of CSI-based hints under auto-rate in

the static traces.

Now we evaluate the throughput under auto rate with and with-
out CSI hints. Comparing Figure 13 and Figure 15, we observe
that the CSI hints in the auto-rate algorithm improve the through-
put from 11% to 33% in the standard mapping, from 21% to 45%
in the smart header mapping, from 2% to 13% in the smart data
mapping, from 15% to 67%in the smart header/data mapping, and
from 16% to 49% in the smart iterative search. The CSI hints and
smart iterative search together improve the throughput of the de-
fault auto-rate scheme by 35% to 112%, which demonstrates the
effectiveness of simultaneously leveraging these techniques.

Figure 16 shows the performance in mobile traces. Comparing
Figure 14 and Figure 16, we see that the benefit of CSI-based hints
extends to the mobile scenarios. CSI hints with auto-rate increase
throughput from 5.3% to 5.8% in the standard mapping, and from
56.6% to 77.8% in the smart iterative search. The CSI hints with
smart iterative search together improve the throughput by 68% to
96%, which confirms the effectiveness of joint optimization.
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Figure 16: Comparison of CSI-based hints under auto-rate in

the mobile traces.

5. TESTBED EXPERIMENTS

5.1 Implementation
As our USRP1 can only support up to 800 KHz, we see more

homogeneous channels than 20-MHz Wi-Fi channels. This is an
artifact of USRP1. As newer generation of software defined radios,
such as USRP2 and SORA, support wider bands, they should see
more frequency diversity. For our experiments, in order to recreate
a similar degree of frequency diversity as we see in aWi-Fi channel,
we use three USRP nodes where two of them communicate using
various schemes and the third USRP injects narrowband interfer-
ence at the boundary of the channel used by the first two USRP
nodes. In this way, the subcarriers on the boundary have lower SNR
while the other subcarriers have higher SNR. We vary the interfer-
ence by changing its transmission power and channel width. In our
experiments, the difference between maximum and minimum SNR
across different subcarriers are comparable to the Wi-Fi channel.
In each transmission, we send out 1000 packets, each having 1000
bytes. Every packet has a CRC-protected header followed by the
CRC-protected payload. The entire packet is divided into blocks,
each of which is encoded using Reed Solomon FEC. To minimize
the change in channel conditions, for each run, we run different
schemes back to back on the USRP. For each experiment, we per-
form five different runs and report the total throughput for each run.
Note that the throughput in different figures are obtained under dif-
ferent channel conditions and cannot be directly compared.

We implement our approaches on top of the standard OFDM ex-
amples in the GNU Radio 3.2.2 package. The default OFDM im-
plementation in this package includes a basic OFDM sender and
receiver chain. It supports BPSK, QPSK and QAM modulation
schemes on the OFDM subcarriers. Our implementation uses 192
subcarriers and operates in the 2.49 GHz range.

We implement the standard mapping and three smart mapping
schemes. In addition, we can enable or disable CSI hints for partial
FEC group recovery. We use QAM-8 and QAM-16 as the modula-
tion schemes in the following experiments.

5.2 Performance Results

Evaluation of symbol mappings: We plot the performance of dif-
ferent symbol mapping schemes in Figure 17 for five runs, each
with different amount of narrowband interference. The through-
put is calculated based on the number of correctly received FEC
groups when the packet header is correctly decoded. When the
header is corrupted, the entire packet is considered to be lost. We
observe that all smart mapping schemes consistently perform bet-
ter than the standard interleaver. For instance, the smart header/data
scheme out-performs the standard interleaver by 42% to 173%, be-

cause it maps important header and data symbols to more reliable
subcarriers and allows more FEC groups to be decoded.

 0

 100

 200

 300

 400

 500

 600

 700

 800

Run1 Run2 Run3 Run4 Run5

T
h
ro

u
g
h
p
u
t 
(K

b
p
s
)

standard
header
data
header/data

Figure 17: Comparison of different symbol mapping schemes

in USRP.

Evaluation of CSI-based hints: We also use the CSI-based hints
to extract the correct bits from the FEC groups that cannot be de-
coded at the receiver. For each such FEC group, we consider a bit
to be correct if (1) it is indeed correct based on the ground-truth
value of the bit and (2) the BER of the subcarrier on which the bit
is received is within 0.005. Again we use the standard function
to map SNR to BER. Figure 18 plots the resulting throughput af-
ter partial recovery for the various schemes during 5 separate runs.
We observe that all the smart interleaver schemes consistently out-
perform the standard interleaver.
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Figure 18: Comparison of CSI-based hints in USRP.
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Figure 19: Evaluation of MAC-layer FEC in USRP.

Evaluation of MAC-layer FEC: We also evaluate the impact of
MAC-layer FEC on USRP. Figure 19 shows the performance un-
der 5 different scenarios with different loss rates. We can see that
MAC-layer FEC improves throughput by 40% to 230% in the stan-
dard mapping.

Evaluation of the joint optimization: Figure 20 compares the per-
formance of jointly applying MAC-layer FEC, smart header/data
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Figure 20: Evaluation of MAC-layer FEC with smart mapping

in USRP.

mapping, and CSI hints and the default scheme, which does not
use any of these techniques. As we can see, the combined approach
out-performs the default scheme by 33% to 147%.

6. RELATED WORK
Our research is related to the works on frequency diversity, rate

adaptation, and partial packet recovery, which we overview below.

Frequency diversity: Wired cable modem, such as DSL, uses
frequency-aware modulation across OFDM subbands [28]. More
recently, the wireless research community also recognizes the im-
portance of frequency diversity in wideband transmissions (e.g.,
100 MHz channel) and has started developing a range of tech-
niques to harness such diversity. For example, FARA [24] develops
frequency-aware rate adaptation and MAC protocol. Our work dif-
fers from FARA by exploiting the frequency diversity using new
techniques, such as mapping symbols to subcarriers and leverag-
ing channel information to improve delivery rate. Our third tech-
nique, MAC-layer FEC, is inspired by frequency-aware rate adap-
tation but differs from it in that (i) it can offer more fine-grained
choices of FEC instead of being restricted to a small number of
modulation/FEC configurations at the physical layer, and (ii) us-
ing two layers of FEC coding is more effective in combating long
error bursts than the current PHY-layer FEC, which uses short con-
volution codes and cannot handle long error bursts. Moreover,
our approach can be easily applied to commodity hardware while
FARA is only applicable to software-defined radios. On the other
hand, FARA-like approaches can benefit from more efficient hard-
ware implementation. It is possible to combine FARA with our
PHY/MAC FEC so that we can benefit from frequency-aware mod-
ulation at the PHY layer and also leverage more fine-grained MAC-
layer FEC to achieve higher efficiency.

[9] shows that frequency diversity is also present in 20-MHz Wi-
Fi channels. They propose the notion of effective SNR to accu-
rately estimate the loss rate based on CSI and develop a simple rate
adaptation scheme based on CSI. Our work is motivated by [9] and
our techniques exploit the frequency diversity in several new di-
mensions and we further develop a joint rate adaptation that works
together with these techniques to achieve higher efficiency. [19]
exploits the frequency diversity in retransmissions. In particular,
it remaps the symbols in the retransmissions to avoid the same set
of symbols getting corrupted and is especially useful under colli-
sions. In comparison, our techniques are more general and apply
to any transmissions, including both original transmissions and re-
transmissions, and reduce the need of retransmissions. Moreover,
our approaches are useful with and without interference.

The third generation partnership project (3GPP) Long Term Evo-
lution (LTE) exploits the frequency diversity by designing time-

frequency domain scheduling algorithms. A variety of scheduling
techniques have been proposed in the literature (e.g., [3, 18, 33]).
Our techniques explore new control strategies to harness frequency
diversity. They are complimentary and can potentially be used in
conjunction with these scheduling schemes.

Rate adaptation: Rate adaptation is an extensively studied topic,
and various rate adaptation algorithms have been proposed in the
literature [4, 10, 16, 17, 22, 23, 25, 26, 31]. For example, [22] is the
rate adaptation algorithm used in the MadWiFi driver. It uses long-
term loss rate estimation and threshold to determine rate changes.
SampleRate [4], proposed by Bicket et al., probes the performance
at a random rate every 10 frames, and selects the rate that minimizes
expected transmission time including retransmission time. Wong et
al. [31] identify the limitations of existing design guidelines for rate
adaptation. Based on their observations, they develop Robust Rate
Adaptation Algorithm (RRAA), which uses short-term loss ratio to
opportunistically change rate and incorporates an adaptive RTS fil-
ter to prevent collision losses from reducing data rate. All these
existing rate adaptation schemes adapt rate according to frame loss
rate. When partial packet recovery is used, the frame loss rate over-
estimates the actual loss rate experienced by data traffic and causes
an unnecessarily low transmission rate to be used. [13, 20] sug-
gest adaptation of rates according to the final loss rate after going
through partial packet recovery. Our rate adaptation work together
with smart mapping, hints, and MAC-layer FEC to achieve even a
higher benefit.

[30] and [5] both propose adapting data rates according to the
fine-grained BER information instead of coarse-grained frame er-
ror rate (FER). The former uses the physical layer hints to obtain
BER while the latter develops an error estimation code to com-
pute BER. [26] proposes a rate adaptation scheme that operates on
symbol constellation and directly computes the optimal rate for the
previous packet based on the dispersion between the transmitted
and received symbol positions. These three approaches implicitly
assume that SNR or symbol dispersion is the same throughout the
frame. Due to frequency diversity, the SNR and symbol disper-
sion can vary significantly within a frame. The combination of
PHY-layer and MAC-layer FEC, as in our approach, can more ef-
fectively handle the signal quality variation within a frame because
we do not have to use a low physical rate on the entire frame just
because a few symbols experience poor quality and can leverage
MAC-layer FEC to protect these symbols.

Partial packet recovery: Partial packet recovery has received sig-
nificant research attention recently. [7] uses fragment-based CRC
so that correctly received fragments can be extracted even though
the entire frame is not received correctly. [14] proposes to use the
physical layer hints to indicate the confidence of received symbols
and only the symbols with low confidence need to be retransmitted.
[21] combines portions of the frames received from multiple radios
for recovery. [32] leverages both physical layer hints and multi-
ple radios to more effectively combine the portions of the frames
from different radios. Unlike [21, 32], which work for multiple ra-
dios, our approach works for both single and multiple radios. Our
CSI-based hints are related to the physical layer hints, but unlike
physical layer hints, which is only available in software defined ra-
dio, CSI information is available in commodity hardware so that
we can benefit immediately. As our evaluation shows that there is
synergy between smart mapping and hints, leveraging both allows
us to achieve even better performance than using the hints alone.
Moreover, we not only use CSI-based hints to extract correct sym-
bols from partially correct frames but also use it to increase the
likelihood for LDPC code to successfully decode the FEC group.



7. CONCLUSION
In this paper, we use measurements from IEEE 802.11 networks

to analyze the extent of the frequency diversity, its temporal sta-
bility, and update cost. Our traces show that CSI exhibits strong
diversity and temporal locality, which make it possible for us to ef-
fectively harness such diversity. We develop three complementary
techniques to effectively harness such diversity. We further lever-
age their synergy to integrate them together and jointly optimize
data rate in presence of these optimizations. Using trace-driven
simulation and testbed evaluation, we show that each of these tech-
niques is effective and yields significant throughput gain, and their
combination with rate adaptation further increases the gain. The
benefit extends to both static and mobile networks.

A number of future directions remain. First, our approach re-
quires CSI information, which is more fine-grained than the widely
used SNR and more challenging to predict. To enhance the robust-
ness against prediction errors (e.g., arising from high mobility sce-
narios), we plan to explore robust optimization (e.g., by applying
stochastic optimization and robust traffic engineering techniques
developed for the Internet [6]). Second, we are interested in collect-
ing more traces and understanding the benefits of our approaches
in more extensive scenarios.
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