<u>Robust Network Compressive</u> <u>Sensing</u>

Yi-Chao Chen The University of Texas at Austin

Joint work with Lili Qiu^{*}, Yin Zhang^{*}, Guangtao Xue⁺, Zhenxian Hu⁺ The University of Texas at Austin^{*} Shanghai Jiao Tong University⁺

> ACM MobiCom 2014 September 10, 2014

Network Matrices and Applications

- Network matrices
 - Traffic matrix
 - Loss matrix
 - Delay matrix
 - Channel State Information (CSI) matrix
 - RSS matrix

\mathbf{Q} : How to fill in missing values in a matrix?

Missing Values: Why Bother?

- Applications need complete network matrices
 - Traffic engineering
 - Spectrum sensing
 - Channel estimation

<u>Interpolation</u>: fill in missing values from *incomplete*, *erroneous*, and/or *indirect* measurements

- Exploit low-rank nature of network matrices
 - matrices are low-rank [LPCD+04, LCD04, SIGCOMM09]: $X_{nxm} \approx L_{nxr} * R_{mxr}^{T}$ (r « n,m)
- Exploit spatio-temporal properties
 - matrix rows or columns close to each other are often close in value [SIGCOMM09]
- Exploit local structures in network matrices
 - matrices have both global & local structures
 - Apply K-Nearest Neighbor (KNN) for local interpolation [SIGCOMM09]

<u>Limitation</u>

- Many factors contribute to network matrices
 - Anomalies, measurement errors, and noise
 - These factors may destroy low-rank structure and spatio-temporal locality

Network Matrices

Network	Date	Duration	Size (flows/links x #timeslot)
3G traffic	11/2010	1 day	472 x 144
WiFi traffic	1/2013	1 day	50 x 118
Abilene traffic	4/2003	1 week	121 × 1008
GEANT traffic	4/2005	1 week	529 x 672
1 channel CSI	2/2009	15 min.	90 x 9000
Multi. Channel CSI	2/2014	15 min.	270 × 5000
Cister RSSI	11/2010	4 hours	16 × 10000
CU RSSI	8/2007	500 frames	895 x 500
Umich RSS	4/2006	30 min.	182 x 3127
UCSB Meshnet	4/2006	3 days	425 x 1527

Rank Analysis (Cont.)

Adding anomalies increases rank in all traces

Temporal Stability

<u>Summary of the Analyses</u>

- Our analyses reveal
 - Real network matrices may not be low rank
 - Adding anomalies increases the rank
 - Temporal stability varies across traces

<u>Challenges</u>

- How to explicitly account for anomalies, errors, and noise ?
- How to support matrices with different temporal stability?

Robust Compressive Sensing

- A new matrix decomposition that is general and robust against error/anomalies
 - Low rank matrix, anomaly matrix, noise matrix
- A self-learning algorithm to automatically tune the parameters
 - Account for varying temporal stability
- An efficient optimization algorithm
 - Search for the best parameters
 - Work for large network matrices

LENS Decomposition: Basic Formulation

15

LENS Decomposition: Basic Formulation

16

• Formulate it as a convex opt. problem: min: $\alpha \|X\|_* + \beta \|Y\|_1 + \frac{1}{2\sigma} \|Z\|_F^2$ subject to: X + Y + Z + W = DE.*W = W

<u>LENS Decomposition:</u> <u>Support Indirect Measurement</u>

- The matrix of interest may not be directly observable (e.g., traffic matrices)
 - -AX + BY + CZ + W = D
 - A: routing matrix
 - B: an over-complete anomaly profile matrix
 - C: noise profile matrix

17

<u>LENS Decomposition:</u> Account for Domain Knowledge

- Domain Knowledge
 - Temporal stability
 - Spatial locality
 - Initial solution

$$\left| \frac{\gamma}{2\sigma} \right| X \left[\begin{array}{ccccc} 1 & -1 & 0 & \cdots \\ 0 & 1 & -1 & \ddots \\ 0 & 0 & 1 & \ddots \\ \vdots & \ddots & \ddots & \ddots \end{array} \right]^{T} \left| \begin{array}{c} 2 \\ \end{array} \right|_{F}^{2}$$

min:
$$\alpha \|X\|_* + \beta \|Y\|_1 + \frac{1}{2\sigma} \|Z\|_F^2 + \frac{\gamma}{2\sigma} \sum_{k=1}^K \|P_k X Q_k^T - R_k\|_F^2$$

subject to: AX + BY + CZ + W = D

$$E.*W = W$$

Optimization Algorithm

- One of many challenges in optimization:
 - X and Y appear in multiple places in the objective and constraints
 - Coupling makes optimization hard
- Reformulation for optimization by introducing auxiliary variables

• min:
$$\alpha \|X\|_* + \beta \|Y\|_1 + \frac{1}{2\sigma} \|Z\|_F^2 + \frac{\gamma}{2\sigma} \sum_{k=1}^K \|P_k X_k Q_k^T - R_k\|_F^2$$

subject to:
$$AX_0 + BY_0 + CZ + W = D$$

 $E \cdot W = W$
 $X_k - X = 0 \quad (\forall k = 0, ..., K)$
 $Y_0 - Y = 0$

Optimization Algorithm

- Alternating Direction Method (ADM)
 - For each iteration, alternate among the optimization of the augmented Lagrangian function by varying each one of X, X_k, Y, Y₀, Z, W, M, M_k, N while fixing the other variables
 - Improve efficiency through approximate SVD

$$Setting Parameters$$

$$min: \alpha \|X\|_* + \beta \|Y\|_1 + \frac{1}{2\sigma} \|Z\|_F^2 + \frac{\gamma}{2\sigma} \sum_{k=1}^K \|P_k X_k Q_k^T - R_k\|_F^2$$

$$\alpha = \left(\sqrt{m_x} + \sqrt{n_x}\right) \left(\sqrt{\eta(D)}\right)$$

$$\beta = \sqrt{2\log(m_Y n_Y)}$$

• $\sigma = \theta \sigma_D$

where (m_X, n_X) is the size of X, (m_Y, n_Y) is the size of Y, n(D) is the fraction of entries neither missing or erroneous, θ is a control parameter that limits contamination of dense measurement noise

Setting Parameters (Cont.)

min:
$$\alpha \|X\|_* + \beta \|Y\|_1 + \frac{1}{2\sigma} \|Z\|_F^2 + \frac{\gamma}{2\sigma} \sum_{k=1}^K \|P_k X_k Q_k^T - R_k\|_F^2$$

- Y reflects the importance of domain knowledge
 - e.g. temporal-stability varies across traces
- Self-tuning algorithm
 - Drop additional entries in the matrix
 - Quantify the error of the entries that were present in the matrix but dropped intentionally during the search
 - Pick $\boldsymbol{\Upsilon}$ that gives lowest error

Evaluation Methodology

- Metric
 - <u>N</u>ormalized <u>Mean Absolute Error for missing values</u>

$$NMAE = \frac{\sum_{i,j:M(i,j)=0} |X(i,j) - X_{est}(i,j)|}{\sum_{i,j:M(i,j)=0} |X(i,j)|}$$

- Report the average of 10 random runs
- Anomaly generation
 - Inject anomalies to a varying fraction of entries with varying sizes
- Different dropping models

<u>Algorithms Compared</u>

Algorithm	Description
Baseline	Baseline estimate via rank-2 approximation
SVD-base	SRSVD with baseline removal
SVD-base +KNN	Apply KNN after SVD-base
SRMF [SIGCOMM09]	Sparsity Regularized Matrix Factorization
SRMF+KNN [SIGCOMM09]	Hybrid of SRMF and KNN
LENS	Robust network compressive sensing

<u>Self Learned Y</u>

Interpolation without anomalies

CU RSSI

<u>Summary of Other Results</u>

- The improvement of LENS increases with anomaly sizes and # anomalies.
- LENS consistently performs the best under different dropping modes.
- LENS yields the lowest prediction error.
- LENS achieves higher anomaly detection accuracy.

<u>Conclusion</u>

- Main contributions
 - Important impact of anomalies in matrix interpolation
 - Decompose a matrix into
 - a low-rank matrix,
 - a sparse anomaly matrix,
 - a dense but small noise matrix
 - An efficient optimization algorithm
 - A self-learning algorithm to automatically tune the parameters
- Future work
 - Applying it to spectrum sensing, channel estimation, localization, etc.

Thank you!

Missing Values: Why Bother?

- Missing values are common in network matrices
 - Measurement and data collection are unreliable
 - Anomalies/outliers hide non-anomaly-related traffic
 - Future entries has not yet appeared
 - Direct measurement is infeasible/expensive

Anomaly Generation

- Anomalies in real-world network matrices
 - The ground truth is hard to get
 - Injecting the same size of anomalies for all network matrices is not practical
- Generating anomalies based on the nature of the network matrix [SIGCOMMO4, INFOCOMO7, PETS11]
 - Apply Exponential Weighted Moving Average (EWMA) to predict the matrix
 - Calculate the difference between the real matrix and the predicted matrix
 - The difference is due to prediction error or anomalies
 - Sort the difference and select the largest one as the size of anomalies

Interpolation under anomalies

Interpolation without anomalies

<u>LENS performs the best even without anomalies.</u>

Non-monotonicity of Performance

- SVD base method is more sensitive the anomalies
- performance is affected by both the missing rate and the number of anomalies.
 - As the missing rate increases, the number of anomalies reduces.
 - When the missing rate increase, error increases
 - When the anomalies reduces, error reduces

- Pure Random Loss
 - Elements are dropped independently with a random loss rate

- Time Rand Loss
 - Columns are dropped
 - To emulate random losses during certain times
 - e.g. disk becomes full

$$\begin{bmatrix} d_{1,1} & & d_{1,4} & & d_{1,n} \\ d_{2,1} & & d_{2,4} & \cdots & d_{2,n} \\ d_{3,1} & & d_{3,4} & & d_{3,n} \\ & & & \ddots \\ d_{m,1} & & d_{m,4} & & d_{m,n} \end{bmatrix}$$

Dropping Models

- Element Rand Loss
 - Rows are dropped
 - To emulate certain nodes lose data
 - e.g., due to battery drain

$$\begin{bmatrix} d_{1,1} & d_{1,2} & d_{1,3} & d_{1,4} & d_{1,n} \\ d_{2,1} & d_{2,2} & & \\ d_{3,1} & d_{3,2} & d_{3,3} & d_{3,4} & d_{3,n} \\ & \vdots & \ddots \\ d_{m,1} \end{bmatrix}$$

Dropping Models

- Element Synchronized Loss
 - Rows are dropped at the same time
 - To emulate certain nodes experience the same lose events at the same time
 - e.g., power outage of an area

$$\begin{bmatrix} d_{1,1} & d_{1,2} & d_{1,3} & d_{1,4} & & d_{1,n} \\ & & d_{2,4} & \cdots & d_{2,n} \\ & & d_{3,4} & & d_{3,n} \\ & & & \ddots \\ d_{m,1} & d_{m,2} & d_{m,3} & d_{m,4} & & d_{m,n} \end{bmatrix}$$

<u>Impact of Dropping models</u>

Impact of Anomaly Sizes

3G

<u>Impact of Number of Anomalies</u>

The improvement of LENS increases with # anomalies.

Anomaly Detection

Optimization Algorithm

- Alternating Direction Method (ADM)
 - Augmented Lagrangian function

 $\mathcal{L}(X, \{X_k\}, Y, Y_0, Z, W, M, \{M_k\}, N, \mu)$ $\stackrel{\triangle}{=} \qquad \alpha \|X\|_* + \beta \|Y\|_1 + \frac{1}{-} \|Z\|_T^2$

Original Objective

Lagrange multiplier

Penalty

 $\langle U, V \rangle \stackrel{\triangle}{=} \sum_{i,j} (U[i,j] \cdot V[i,j])$

$$\begin{aligned} \alpha \|X\|_{*} + \beta \|Y\|_{1} + \frac{1}{2\sigma} \|Z\|_{F}^{2} \\ + \frac{\gamma}{2\sigma} \sum_{k=1}^{K} \|P_{k}X_{k}Q_{k}^{T} - R_{k}\|_{F}^{2} \\ + \langle M, D - AX_{0} - BY_{0} - CZ - W \rangle \\ + \sum_{k=0}^{K} \langle M_{k}, X_{k} - X \rangle \\ + \langle N, Y_{0} - Y \rangle \\ + \frac{\mu}{2} \cdot \|D - AX_{0} - BY_{0} - CZ - W\|_{F}^{2} \\ + \frac{\mu}{2} \cdot \sum_{k=0}^{K} \|X_{k} - X\|_{F}^{2} \\ + \frac{\mu}{2} \cdot \|Y_{0} - Y\|_{F}^{2} \end{aligned}$$

NMAE

- ™⊡™ WiFi
- + Abilene
- --X- GEANT
- CSI (1 channel)
- CSI (multi-channel)
- Cister RSSI
- •••• CU RSSI
- UMich RSS
- UCSB Meshnet