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Network Matrices and Applications

• Network matrices
– Traffic matrix
– Loss matrix
– Delay matrix
– Channel State Information (CSI) matrix
– RSS matrix
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Q: How to fill in missing values in a matrix?
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• Applications need complete network matrices
– Traffic engineering
– Spectrum sensing
– Channel estimation
– Localization
– Multi-access channel design
– Network coding, wireless video coding
– Anomaly detection
– Data aggregation
– …

Missing Values: Why Bother?
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Figure 4: Our indoor 802.11n testbeds, T1 and T2. T1 consists of 10 nodes spread over 8 100 square feet, and T2 consists of 11 nodes

spread over 20 000 square feet. The nodes are placed to ensure a large number of links between them, a variety of distance between

nodes, and diverse scattering characteristics.
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Figure 5: Sample faded link showing the packet SNR and ef-

fective SNRs for different modulations. BPSK has the lowest

effective SNR, but it needs less energy to decode.

lower SNR). Thus our estimate of the effective BER in Eq. (1) will
accurately reflect the uncoded error performance of the link. Our
algorithm now proceeds as in the case of a flat-fading channel de-
scribed above: we take the computed effective SNR value and use
the measurements from a flat-fading link (Figure 1(a)) to determine
transmission success or failure. As in CHARM [10], we support
different packet lengths with different SNR thresholds.

Note that this procedure differs from the typical approach of
simulation-based analyses [11, 15, 19], that instead map the un-

coded BER estimate such as we compute to a coded BER esti-
mate by means of a simple log-linear approximation. They then
use the coded BER estimate, and the length of the target transmis-
sion, to directly compute the packet delivery rate of the link. We
believe our method of thresholding the effective SNR is better be-
cause it directly accommodates variation in the receiver implemen-
tation. Different devices may have different noise figures, a measure
of how much signal strength is lost in the internal RF circuitry of
the NIC. They may implement soft Viterbi decoders with more or
fewer soft bits for their internal state, or indeed might do hard de-
coding instead. A receiver could use the optimal Maximum Like-
lihood MIMO decoder that has exponential complexity for small
constellations like BPSK, but revert to the imperfect but more ef-
ficient MMSE at higher modulations. All of these can be easily
expressed, albeit maybe approximately, as (perhaps modulation-
dependent) shifts in the effective SNR thresholds. In contrast, chang-
ing these parameters in the simulation approach involves changing
the internals of the calculation.

Protocol Details. Effective SNR calculations can be performed by
either receiver or transmitter, and each has advantages. For it to
make decisions, the transmitter must know the receiver’s thresholds

for the different rates; these are fixed for a particular model of NIC
and can be shared once, e.g., during association. The transmitter
also needs up-to-date CSI: either from feedback or estimated from
the reverse path. Alternately, the receiver can request rates and se-
lect antennas directly using the new Link Adaptation Control field
of any 802.11n QoS packet [1, §7.1.3.5a]. This obviates sending
CSI, but the calculation instead requires that the transmitter share
its spatial mappings, i.e. how it maps spatial streams to transmit an-
tennas. These are likely to change less frequently than the channel,
if at all. Finally, when operating in either mode with fewer trans-
mit streams than antennas, the transmitter must occasionally send a
short probe packet with all antennas to measure the full CSI.

Summary and Example. Combining the above steps, our model
consists of the following: 1) CSI is obtained and a test config-
uration is chosen; 2) the MMSE expression is used to compute
per-stream, subcarrier SNRs from the CSI for the test number of
streams; 3) the effective SNR is computed from the per-stream,
subcarrier SNRs for the test modulation; and 4) the effective SNR
is compared against the pre-determined threshold for the test mod-
ulation and coding to predict whether the link will deliver packets.

As an example, Figure 5 shows the CSI for a SISO link (steps 1–
2) as a fading profile across subcarriers, with the computed effective
SNRs for all modulations (step 3). These effective SNRs are com-
pared with pre-determined thresholds (step 4, see §5) to correctly
predict that the best working rate will be 39 Mbps. Note that these
effective SNRs are well below the RSSI-based packet SNR that is
biased towards the stronger subcarriers (note the logarithmic y-axis
scale). This link does a poor job of harnessing the received power
because it is badly faded, so its RSSI is a poor predictor of rate.

Applications can use this model to find useful configurations
without sending packets to test them. For example, the highest rate
can be predicted by running the model for all candidate rates and
selecting the best working rate. Alternatively, we could predict the
minimum transmit power to support a rate.

4. TESTBEDS

We conduct experiments using two stationary wireless testbeds
deployed in indoor office environments, T1 and T2 (Figure 4). T1
consists of 10 nodes spread over 8 100 square feet. T2 is less dense
by comparison with 11 nodes over 20 000 square feet. Each testbed
covers a single floor of a multi-story building and has a variety of
links in terms of maximum supported rate and line-of-sight versus
multi-path fading. We conduct mobile experiments using laptops
that interact with testbed nodes and are configured in the same way.
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The Problem
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State of the Art
• Exploit low-rank nature of network matrices

– matrices are low-rank [LPCD+04, LCD04, SIGCOMM09]:  
       Xnxm » Lnxr * RmxrT (r « n,m)

• Exploit spatio-temporal properties
– matrix rows or columns close to each other are 

often close in value [SIGCOMM09]

• Exploit local structures in network matrices
– matrices have both global & local structures
– Apply K-Nearest Neighbor (KNN) for local 

interpolation [SIGCOMM09]



Limitation

• Many factors contribute to network 
matrices
– Anomalies, measurement errors, and noise
– These factors may destroy low-rank structure 

and spatio-temporal locality

7



Network Matrices
Network Date Duration Size 

(flows/links x #timeslot)
3G traffic 11/2010 1 day 472 x 144
WiFi traffic 1/2013 1 day 50 x 118
Abilene traffic 4/2003 1 week 121 x 1008
GEANT traffic 4/2005 1 week 529 x 672
1 channel CSI 2/2009 15 min. 90 x 9000
Multi. Channel 
CSI

2/2014 15 min. 270 x 5000

Cister RSSI 11/2010 4 hours 16 x 10000
CU RSSI 8/2007 500 frames 895 x 500
Umich RSS 4/2006 30 min. 182 x 3127
UCSB Meshnet 4/2006 3 days 425 x 1527
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GÉANT: 81%
UMich RSS: 74%

3G: 32%
Cister RSSI: 20%

Not all matrices are low rank. 
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Adding anomalies increases rank in all traces

13%~50%
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Summary of the Analyses

• Our analyses reveal
– Real network matrices may not be low rank
– Adding anomalies increases the rank
– Temporal stability varies across traces
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Challenges

• How to explicitly account for anomalies, 
errors, and noise ?

• How to support matrices with different 
temporal stability?
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Robust Compressive Sensing

• A new matrix decomposition that is general 
and robust against error/anomalies
– Low rank matrix, anomaly matrix, noise matrix

• A self-learning algorithm to automatically 
tune the parameters
– Account for varying temporal stability

• An efficient optimization algorithm
– Search for the best parameters
– Work for large network matrices

14



LENS Decomposition: Basic Formulation
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LENS Decomposition: Basic Formulation

• Formulate it as a convex opt. problem:
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LENS Decomposition: 
Support Indirect Measurement

• The matrix of interest may not be directly 
observable (e.g., traffic matrices)
– AX + BY + CZ + W = D

• A: routing matrix
• B: an over-complete anomaly profile matrix
• C:  noise profile matrix
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LENS Decomposition: 
Account for Domain Knowledge

• Domain Knowledge
– Temporal stability
– Spatial locality
– Initial solution
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Optimization Algorithm
• One of many challenges in optimization:

– X and Y appear in multiple places in the objective and 
constraints

– Coupling makes optimization hard
• Reformulation for optimization by introducing 

auxiliary variables

•  
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Optimization Algorithm
• Alternating Direction Method (ADM)

– For each iteration, alternate among the 
optimization of the augmented Lagrangian 
function by varying each one of X, Xk, Y, Y0, Z, 
W, M, Mk, N while fixing the other variables

– Improve efficiency through approximate SVD

20



Setting Parameters

•  
•  
•  

where (mX,nX) is the size of X,
           (mY,nY) is the size of Y,
           η(D) is the fraction of entries
neither missing or erroneous,
            θ is a control parameter that limits
contamination of dense measurement noise
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Setting Parameters (Cont.)

• ϒ reflects the importance of domain 
knowledge
– e.g. temporal-stability varies across traces

• Self-tuning algorithm
– Drop additional entries in the matrix
– Quantify the error of the entries that were 

present in the matrix but dropped intentionally 
during the search

– Pick ϒ that gives lowest error
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Evaluation Methodology
• Metric

– Normalized Mean Absolute Error for missing values

• Report the average of 10 random runs
• Anomaly generation

– Inject anomalies to a varying fraction of entries with 
varying sizes

• Different dropping models

23
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Algorithms Compared

Algorithm Description
Baseline Baseline estimate via rank-2 

approximation
SVD-base SRSVD with baseline removal

SVD-base +KNN Apply KNN after SVD-base

SRMF [SIGCOMM09] Sparsity Regularized Matrix Factorization

SRMF+KNN [SIGCOMM09] Hybrid of SRMF and KNN

LENS Robust network compressive sensing
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No single ϒ works for all traces.
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CU RSSI

LENS performs the best under anomalies.
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LENS performs the best even without anomalies.
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Summary of Other Results
• The improvement of LENS increases with 

anomaly sizes and # anomalies.

• LENS consistently performs the best under 
different dropping modes. 

• LENS yields the lowest prediction error.

• LENS achieves higher anomaly detection 
accuracy.
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Conclusion
• Main contributions

– Important impact of anomalies in matrix interpolation
– Decompose a matrix into 

• a low-rank matrix, 
• a sparse anomaly matrix, 
• a dense but small noise matrix

– An efficient optimization algorithm
– A self-learning algorithm to automatically tune the 

parameters
• Future work

– Applying it to spectrum sensing, channel estimation, 
localization, etc.
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Thank you!



BACKUP SLIDES
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y1,t = x1,t + x2,t
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Missing Values: Why Bother?
• Missing values are common in network matrices

– Measurement and data collection are unreliable
– Anomalies/outliers hide non-anomaly-related traffic
– Future entries has not yet appeared
– Direct measurement is infeasible/expensive
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Anomaly Generation
• Anomalies in real-world network matrices

– The ground truth is hard to get
– Injecting the same size of anomalies for all network 

matrices is not practical

• Generating anomalies based on the nature of the 
network matrix [SIGCOMM04, INFOCOM07, PETS11]

– Apply Exponential Weighted Moving Average (EWMA) 
to predict the matrix

– Calculate the difference between the real matrix and 
the predicted matrix

• The difference is due to prediction error or anomalies
– Sort the difference and select the largest one as the 

size of anomalies
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3G

LENS performs the best under anomalies.
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Non-monotonicity of Performance

• SVD base method is more sensitive the 
anomalies

• performance is affected by both the 
missing rate and the number of anomalies.
– As the missing rate increases, the number of 

anomalies reduces.
• When the missing rate increase, error increases
• When the anomalies reduces, error reduces
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Dropping Models

• Pure Random Loss
– Elements are dropped independently with a 

random loss rate
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Dropping Models

• Time Rand Loss
– Columns are dropped 
– To emulate random losses during certain times

• e.g. disk becomes full
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Dropping Models

• Element Rand Loss
– Rows are dropped
– To emulate certain nodes lose data 

• e.g., due to battery drain
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Dropping Models

• Element Synchronized Loss
– Rows are dropped at the same time
– To emulate certain nodes experience the same 

lose events at the same time 
• e.g., power outage of an area
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Impact of Dropping models 42
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3G

The improvement of LENS increases with anomaly sizes. 
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3G

The improvement of LENS increases with # anomalies.



Impact of Noise
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Figure 8: Impact of number of anomalies when the loss rate =
50% and s = 1.

Different dropping modes: Next we compare the interpolation
accuracy under different dropping modes. In the interest of brevity,
Figure 10 shows interpolation error for UCSBMeshnet traces. NMAE
is similar for the other traces. As we can see, LENS yields lowest
NMAE under all dropping modes. It out-performs SRMF-based
schemes by 52.9%, and out-perform SVD-based schemes by 60.0%.

Prediction: Prediction is different from general interpolation be-
cause consecutive columns are missing. SVD is not applicable in
this context. KNN does not work well either since temporally or
spatially near neighbors have missing values. Figure 11 shows the
prediction error as we vary the prediction length (i.e., prediction
length l means that the first 1 − l columns are used to predict the
remaining l columns). We include Base in the figure since [50]
shows Base is effective in prediction. LENS out-performs SRMF,
which out-performs Base.
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Figure 9: Impact of noise sizes when the loss rate = 50% and
no anomaly.

Figure 12 further compares Base, SRMF, and LENS as we vary
anomaly size. LENS continues to out-perform SRMF and Base.
On average, it improves SRMF by 17.7%, and improves Base by
30.4%. Figure 13 shows the performance as we vary the number
of anomalies. LENS continues to perform the best, out-performing
SRMF by 29.6% and Base by 34.6%.

Anomaly detection: We further compare the accuracy of anomaly
detection as we inject anomalies to 5% elements with s = 1.
SRMF detects anomalies based on the difference between the ac-
tual and estimated values, and consider the entry has an anomaly if
its difference is larger than a threshold. LENS considers all entries
whose Y values are larger than a threshold as anomalies. Follow-
ing [50], for each of the schemes, we choose a threshold to achieve
the false alarm probability within 10−5. As shown in Figure 14,
LENS consistently out-performs SRMF+KNN. In 3G and Cister
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50% and s = 1.

Different dropping modes: Next we compare the interpolation
accuracy under different dropping modes. In the interest of brevity,
Figure 10 shows interpolation error for UCSBMeshnet traces. NMAE
is similar for the other traces. As we can see, LENS yields lowest
NMAE under all dropping modes. It out-performs SRMF-based
schemes by 52.9%, and out-perform SVD-based schemes by 60.0%.

Prediction: Prediction is different from general interpolation be-
cause consecutive columns are missing. SVD is not applicable in
this context. KNN does not work well either since temporally or
spatially near neighbors have missing values. Figure 11 shows the
prediction error as we vary the prediction length (i.e., prediction
length l means that the first 1 − l columns are used to predict the
remaining l columns). We include Base in the figure since [50]
shows Base is effective in prediction. LENS out-performs SRMF,
which out-performs Base.

SVD Base
SVD Base+KNN

SRMF
SRMF+KNN

LENS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.1  0.2  0.3  0.4  0.5  0.6

N
M

A
E

Noise Size

(a) 3G

 0

 0.5

 1

 1.5

 2

 0  0.1  0.2  0.3  0.4  0.5  0.6

N
M

A
E

Noise Size

(b) WiFi

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.1  0.2  0.3  0.4  0.5  0.6

N
M

A
E

Noise Size

(c) Abilene

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.1  0.2  0.3  0.4  0.5  0.6

N
M

A
E

Noise Size

(d) GÉANT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.1  0.2  0.3  0.4  0.5  0.6

N
M

A
E

Noise Size

(e) 1-channel CSI

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6

N
M

A
E

Noise Size

(f) Multi-channel CSI

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  0.1  0.2  0.3  0.4  0.5  0.6

N
M

A
E

Noise Size

(g) Cister RSSI

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.1  0.2  0.3  0.4  0.5  0.6

N
M

A
E

Noise Size

(h) CU RSSI

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6

N
M

A
E

Noise Size

(i) UMich RSS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.1  0.2  0.3  0.4  0.5  0.6

N
M

A
E

Noise Size

(j) UCSB Meshnet

Figure 9: Impact of noise sizes when the loss rate = 50% and
no anomaly.

Figure 12 further compares Base, SRMF, and LENS as we vary
anomaly size. LENS continues to out-perform SRMF and Base.
On average, it improves SRMF by 17.7%, and improves Base by
30.4%. Figure 13 shows the performance as we vary the number
of anomalies. LENS continues to perform the best, out-performing
SRMF by 29.6% and Base by 34.6%.

Anomaly detection: We further compare the accuracy of anomaly
detection as we inject anomalies to 5% elements with s = 1.
SRMF detects anomalies based on the difference between the ac-
tual and estimated values, and consider the entry has an anomaly if
its difference is larger than a threshold. LENS considers all entries
whose Y values are larger than a threshold as anomalies. Follow-
ing [50], for each of the schemes, we choose a threshold to achieve
the false alarm probability within 10−5. As shown in Figure 14,
LENS consistently out-performs SRMF+KNN. In 3G and Cister
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Optimization Algorithm
49

• Alternating Direction Method (ADM)
– Augmented Lagrangian function

sensing that can cope with such a general formulation. Below we
first reformulate Eq. (4) to make it easier to solve. We then consider
the augmented Lagrangian function of the reformulated problem
and develop an Alternating Direction Method to solve it.

Reformulation for optimization: Note that X and Y appear in
multiple locations in the objective function and constraints in the
optimization problem 4. This coupling makes optimization diffi-
cult. To reduce coupling, we introduce a set of auxiliary variables
X0, X1, · · · , XK and Y0 and reformulate the problem as follows:

minimize: α∥X∥∗ + β∥Y ∥1 +
1
2σ

∥Z∥2
F

+
γ
2σ

K
X

k=1

∥PkXkQT
k − Rk∥2

F ,

subject to: AX0 + BY0 + CZ + W = D,

E. ∗ W = W,

Xk − X = 0 (∀k = 0, · · · , K),

Y0 − Y = 0. (5)

where Y0 and Xk(0 ≤ k ≤ K) are auxiliary variables. Note that
formulations Eq. (5) and Eq. (4) are equivalent.

Alternating Direction Method for solving (5): We apply an Al-
ternating Direction Method (ADM) [4] to solve the convex opti-
mization problem in (5). Specifically, we consider the augmented
Lagrangian function:

L(X, {Xk}, Y, Y0, Z, W, M, {Mk}, N, µ)

△

= α∥X∥∗ + β∥Y ∥1 +
1

2σ
∥Z∥2

F

+
γ

2σ

K
X

k=1

∥PkXkQT
k − Rk∥

2
F

+ ⟨M, D − AX0 − BY0 − CZ − W ⟩ (6)

+
K

X

k=0

⟨Mk, Xk − X⟩ (7)

+ ⟨N, Y0 − Y ⟩ (8)

+
µ

2
· ∥D − AX0 − BY0 − CZ − W∥2

F (9)

+
µ

2
·

K
X

k=0

∥Xk − X∥2
F (10)

+
µ

2
· ∥Y0 − Y ∥2

F (11)

where M , {Mk}, N are the Lagrangian multipliers [1] for the
equality constraints in Eq. (5), and ⟨U, V ⟩ △

=
P

i,j(U [i, j] ·V [i, j])
for two matrices U and V (of the same size). Essentially, the aug-
mented Lagrangian function includes the original objective, three
Lagrange multiplier terms (6)–(8), and three penalty terms con-
verted from the equality constraints (9)–(11). Lagrange multipli-
ers are commonly used to convert an optimization problem with
equality constraints into an unconstrained one. Specifically, for
any optimal solution that minimizes the (augmented) Lagrangian
function, the partial derivatives with respect to the Lagrange mul-
tipliers must be 0. Hence the original equality constraints will be
satisfied. The penalty terms enforce the constraints to be satisfied.
The benefit of including Lagrange multiplier terms in addition to
the penalty terms is that µ no longer needs to iteratively increase to
∞ to solve the original constrained problem, thereby avoiding ill-
conditioning [4]. Note that we do not include terms corresponding
to constraint E. ∗ W = W in the augmented Lagrangian function,

because it is straightforward to enforce this constraint during each
iteration of the Alternating Direction Method without the need for
introducing additional Lagrange multipliers.

The ADM algorithm progresses in an iterative fashion. During
each iteration, we alternate among the optimization of the aug-
mented Lagrangian function by varying each one of X , {Xk}, Y ,
Y0, Z, W , M , {Mk}, N while fixing the other variables. Intro-
ducing auxiliary variables {Xk} and Y0 makes it possible to obtain
a close-form solution for each optimization step. Following ADM,
we increase µ by a constant factor ρ ≥ 1 during each iteration.
When involving only two components, ADM is guaranteed to con-
verge quickly. In our general formulation, convergence is no longer
guaranteed, though empirically we observe quick convergence in
all our experiments (e.g., as shown in Section 4). We plan to apply
techniques in [13] to ensure guaranteed convergence in future work.
We further improve efficiency by replacing exact optimization with
approximate optimization during each iteration. Appendix A gives
a detailed description on the steps during each iteration.

Improving efficiency through approximate SVD: Themost time-
consuming operation during each iteration of the Alternating Di-
rection Method is performing the singular value decomposition. In
our implementation, we add an additional constraint on the rank of
matrix X: rank(X) ≤ r, where r is a user-specified parameter
that represents an estimated upper bound on the true rank of X .
We then explicitly maintain the SVD of X and update it approxi-
mately during each iteration through the help of rank-revealing QR
factorization of matrices that have only r columns (which are much
smaller than the original matrices used in SVD). We omit the de-
tails of approximate SVD in the interest of space.

3.3 Setting Parameters
Setting α, β and σ: A major advantage of our LENS decompo-
sition is that a good choice of the parameters α and β can be ana-
lytically determined without requiring any manual tuning. Specif-
ically, let σD be the standard deviation of measurement noise in
data matrix D (excluding the effect of low-rank, sparse, and error
terms). For now, we assume that σD is known, and we will de-
scribe how to determine σD later in this section. Moreover, we first
ignore the domain knowledge term and will adaptively set γ for the
domain knowledge term based on the given α and β.

Let density η(D) = 1 −
P

i,j E[i,j]

m×n be the fraction of entries in
D that are neither missing nor erroneous, where the size of D is
m × n and the size of Y is mY × nY . E[i, j] can be estimated
based on domain knowledge. For example, we set E[i, j] = 1 if
the corresponding entry takes a value outside its normal range (e.g.,
a negative traffic counter) or measurement software reports an error
on the entry. Moreover, our evaluation shows that LENS is robust
against estimation error in η(D).

We propose to set:

α = (
√

mX +
√

nX) ·
p

η(D) (12)

β =
p

2 · log(mY · nY ) (13)

σ = θ · σD (14)

where (mX , nX) is the size of X , (mY , nY ) is the size of Y . θ
is a user-specified control parameter that limits the contamination
of the dense measurement noise σD when computing X and Y . In
all our experiments, we set θ = 10, though it is also possible to
choose θ adaptively, just like how we choose γ as described later
in this section.

Below we provide some intuition behind the above choices of α
and β using the basic formulation in Eq. (1). The basic strategy is
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Figure 10: UCSB Meshnet: interpolation performance under
various dropping models and 5% anomalies. xx and p in (a)-
(c) are defined in Section 4.1
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Figure 11: Prediction performance under 5% anomalies
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Figure 12: Prediction performance with various anomaly sizes,
5% anomalies, and 10% prediction length.

RSSI traces, its F1-score is 17.6% higher than that of SRMF+KNN.
This shows that LENS is effective in anomaly detection.

Computational time: Figure 15 compares the computation time
of LENS and SRMF when both use 500 iterations. As we can see,
LENS has much smaller computation time due to local optimiza-
tion in ADM. This makes it feasible to perform efficient search over
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Figure 13: Prediction performance with various number of
anomalies when the prediction length = 10%
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Figure 14: Anomaly detection performance as we inject
anomalies to 5% elements with s = 1.

different parameters. Figure 16 further shows that LENS converges
within 200-250 iterations.
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Figure 15: Computation time
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Figure 16: The interpolation performance of LENS under var-
ious number of iterations when the loss rate = 50% and s = 1.

5. RELATEDWORK
Compressive sensing: LENS belongs to the realm of compres-
sive sensing, a generic methodology for extracting and exploiting
the presence of certain types of structure and redundancy in data
from many real-world systems. Compressive sensing has recently
attracted considerable attentions from statistics, approximation the-
ory, information theory, and signal processing [8, 14, 7, 37, 38, 50]
and is rapidly becoming a vibrant research area of its own.

Most existing compressive sensing works assume that the matri-
ces satisfy low-rank property. However, this assumption may not
hold in as we show in Section 2. Violation of such assumption
significantly limits the accuracy of these techniques.

Significant work has been done for solving under-determined lin-
ear inverse problems. Missing value interpolation, prediction, and
network tomography can be cast into the same formulation. As de-
scribed in [48], many solutions solve the regularized least-squares
problem: minx ∥y − Ax∥2

2 + λ2J(x), where ∥ · ∥2 denotes the


