

DoCam: Depth Sensing with an Optical Image Stabilization Supported RGB Camera

Hao Pan¹, Feitong Tan², Yi-Chao Chen¹, Gaoang Huang¹, Qingyang Li¹, Wenhao Li¹, Guangtao Xue¹, Lili Qiu³, Xiaoyu Ji⁴

¹Shanghai Jiao Tong University
 ²Simon Fraser University
 ³ The University of Texas at Austin
 ⁴ Zhejiang University

> Depth Estimation on Mobile Devices

- > OIS Can Do More Than Image Stabilization
- DoCam: System Design
- > Performance Comparison with SOTA
- Conclusion

Depth information is important!

3D Modeling

Augmented Reality

Relighting

Refocusing

Scene/object segmentation

Depth estimation on mobile devices

Stereo Camera

Depth "Z" and disparity "d" are inversly related:

Structured Light Sensor

Disadvantages:
1. Unstable
2. Need big baseline (>10cm)

Disadvantages:
Depth range is small (<1m)
Application is limited

Depth estimation on mobile devices

Disadvantages:
1. Cost high and take up space
2. Cannot work well in outdoors scene

Depth from Multi-View Stereo (MVS) method

Moving camera with <u>50cm</u>

The key of the MVS is the accurate relative poses of moving cameras

- [⊗] Limitations:
- 1. Accurate depth map needs big motion
- 2. Cannot work with the fixed camera

Replace handheld motion with mechanically controlled motion

Regular motion

Unregular motion

- > Depth Estimation in Mobile Devices
- > OIS Can Help with Depth Estimation
- > DoCam: System Design
- > Performance Comparison with SOTA
- Conclusion

OIS prevents the video and image from being blurry

Optical Image Stabilization Techniques

MEMS sensors and acoustic injection

MEMS accelerometer

Demo Video: controlling lens motion with acoustic injection

- > Depth Estimation in Mobile Devices
- > OIS Can Help with Depth Estimation
- DoCam: System Design
- > Performance Comparison with SOTA
- Conclusion

Relationship between gyroscope reading and lens motion (camera poses)

(c) Camera intrinsic paras

We can recover accurate camera poses with OIS model !

Depth sensing with OIS-controlled lens motion

(a) Multiple frames acquisition with OIS-controlled lens motion

(b) Depth estimation algorithm

- > Depth Estimation in Mobile Devices
- > OIS Can Help with Depth Estimation
- > DoCam: System Design
- Evaluation and Application
- > Conclusion

Comparison with handheld small motion

Reference frame (RGB)

Depth map from small handheld motion (10cm) Depth map from OIS-controlled lens motion (<3mm)

Applications of depth sensing in mobile devices

Face Authentication (liveness detection)

Refocusing (take pictures first, then focus)

If OIS (lens) can be controlled, we can do more than stabilization

Depth estimation by moving monocular camera

Simulate equatorial instrument to track stars

Super resolution (pixel shift)

Light field camera

- > Depth Estimation in Mobile Devices
- > OIS Can Help with Depth Estimation
- > DoCam: System Design
- > Evaluation and Application

Conclusion

Conclusion

We exploit the potential of the OIS techniques to facilitate depth estimation without handheld motion or on the fixed camera

- To the best of our knowledge, our proposed DoCam system is the first to use lens motion in the OIS module to achieve a robust depth estimation technology.
- We propose the formulation and mathematically model the conversion between camera poses and lens motions, and these constraints can be leveraged in recovering the camera poses.
- We develop a unified framework by which to estimate accurate camera poses with a micro-scale stereo baseline for use in high-quality depth estimation.
- We prototype the DoCam on Xiaomi 10 Ultra and demonstrate the accuracy of depth map output from our system.

Thanks watching!

for