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ABSTRACT
Acoustic imaging is attractive due to its ability to work under oc-
clusion, different lighting conditions, and privacy-sensitive environ-
ments. Existing acoustic imaging methods require large transceiver
arrays or device movement, which makes it challenging to use in
many scenarios. In this paper, we develop a novel acoustic imaging
system for low-cost devices with few speakers and microphones
without any device movement. To achieve this goal, we leverage a
3D-printed passive acoustic metasurface to significantly enhance
the diversity of the measurement data, thereby improving the imag-
ing quality. Specifically, we jointly design the transmission signal,
transceivers’ beamforming weights, metasurface, and imaging algo-
rithm to minimize the imaging reconstruction error in an end-to-end
manner. We further develop a scheme to dynamically adapt the imag-
ing resolution based on the distance to the target. We implement a
system prototype. Using extensive experiments, we show that our
system yields high-quality images across a wide range of scenarios.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile com-
puting; Ubiquitous and mobile computing systems and tools.
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1 INTRODUCTION
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Figure 1: Illustration of MAJIC.

Motivation: Acoustic imaging uses sound waves reflected by a tar-
get object to reconstruct images of its shape. It complements widely
used cameras since sound waves work under different lighting con-
ditions and can penetrate through certain materials with high energy
efficiency. Unlike RF-based imaging techniques, such as RFID [46],
Wi-Fi [19, 20, 23, 35], mmWave [4, 7, 37], and Terahertz [14, 43],
acoustic imaging can be easily deployed by using low-cost micro-
phones and speakers on commercial devices. Such wide availability
of speakers and microphones makes acoustic imaging attractive
for many applications, including gesture recognition [42], activity
detection [24, 29], and weapon detection [28].

To accurately reconstruct images, conventional acoustic imaging
systems require large arrays of transceivers ( e.g., 40 speakers and
40 microphones) to ensure adequate spatial sampling and signal-to-
noise ratio (SNR), which results in dedicated, expensive, and com-
plex hardware designs [15, 16, 21]. In contrast, existing commercial
IoT devices typically have only a small number of transceivers to
limit cost and energy consumption. For example, the latest Amazon
Echo has seven microphones and three speakers [1], and the latest
Apple HomePod has six microphones and eight speakers [17]. While
they already have the largest number of transceivers in the market, it
is still far from what is necessary to produce high-quality images.

In order to address the challenge of limited transceivers, AIM [28]
made an early stride by introducing synthetic aperture radar (SAR).
However, its reliance on mechanical movement spanning tens of cen-
timeters makes it challenging to deploy in static devices (e.g.smart
speakers). SPiDR [5] employed a 3D-printed metamaterial stencil
to enhance spatial perception by dividing signals from the speakers
into multiple replicas. Although this presented an intriguing initial
solution, it uses a rather basic image reconstruction algorithm and
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stencil design and requires multiple frames through robot motion
to get clear images. Therefore, despite these advances, realizing
acoustic imaging on low-cost IoT devices without device movement
remains an open challenge.
Our approach: In this paper, as shown in Figure 1, we develop
Metasurface Acoustic based Joint optimized Imaging sCheme (MA-
JIC), a low-cost and high-quality acoustic imaging system that em-
ploys a passive acoustic metasurface to achieve accurate acoustic
imaging without device movement. We use a passive metasurface to
turn a small transceiver array into a larger one, and jointly design the
transmission signal, transceivers’ beamforming, metasurface, and
imaging algorithm to optimize the image reconstruction error.

Specifically, we cast the acoustic imaging problem as a linear
inverse problem of inferring pixel values in an image, denoted as 𝑥 ,
based on the received signal 𝑦 = 𝐴𝑥 , where 𝐴 is the measurement
matrix determined by the transmission signal and the channel. Our
objective is to minimize the mean square error between the estimated
image and the ground truth image. The imaging accuracy depends
on (i) the choice of measurement matrix 𝐴, and (ii) the imaging
algorithm.

For (i), we observe that the imaging quality can be improved
by increasing the effective rank of 𝐴 (i.e., the number of singular
values that account for 99% of the energy). In fact, the effective rank
of 𝐴 measures the similarity among spatial sampling points and is
commonly improved by using more transceivers and frequencies for
measurement. However, when the number of transceivers is fixed, the
effective rank of 𝐴 quickly saturates as the number of measurement
frequencies increases. The rank at the saturation point is primarily
governed by the number of transceivers. Therefore, unless a large
number of speakers and microphones (e.g., 40 of each) are used,
the effective rank of 𝐴 is much smaller than the image size, which
significantly limits the imaging accuracy.

To tackle this challenge, we design a low-cost passive acoustic
metasurface. The metasurface is composed of many sub-wavelength
cells. Each cell can be considered as a small antenna independently
controlling the outgoing acoustic signal. By carefully adjusting the
amplitude and phase of each cell, the metasurface can be used to
modulate the transceiver’s wavefront, thereby increasing the diver-
sity of the channel. With the assistance of such a metasurface, the
rank of the measurement matrix can be effectively increased even
under a small number of transceivers. We show that even a random
metasurface can significantly improve the imaging quality.

To further enhance the effectiveness of the metasurface, we jointly
design the transmission signal, transceivers’ beamforming, metasur-
face, and imaging algorithm to optimize the imaging reconstruction
error in an end-to-end manner. We develop an iterative process that
first refines the signal, beamforming, and metasurface and then re-
constructs the image based on the given configuration and iterates
until the reconstructed image converges.

For (ii), many algorithms have been proposed to solve linear in-
verse problems 𝑦 = 𝐴𝑥 . However, two significant challenges render
the existing algorithms inadequate for producing high-quality im-
ages: 1) even using an optimized metasurface and phased arrays,
the effective rank of the measurement matrix is still insufficient to
uniquely determine the image since the number of pixels is typically
much larger the rank of the measurement matrix, and 2) real mea-
surement may contain significant noise due to background noise,

hardware artifacts, and angular deviations, which can significantly
degrade the imaging quality.

One way to handle insufficient constraints is to use compressive
sensing, which introduces a regularization term, such as sparsity of
the unknowns, and use Alternating Direction Method of Multipliers
(ADMM) to solve it. However, such explicit priors may not strictly
hold in general. Instead, we propose a physics-informed image re-
construction algorithm to reconstruct an image. Inspired by [44], we
unroll the ADMM into a neural network, which treats each iteration
in ADMM as a neural layer. We go beyond [44] by introducing
learnable neural priors and hyperparameters in each neural layer
and refining the priors using image data. Turning ADMM into a
neural network and introducing learnable priors allow us to exploit
the unique characteristics in the underlying data, enhance imaging
quality, and speed up convergence, while maintaining the white box
design. To further enhance robustness against noise, we concatenate
the neural network with a refined network to denoise the image and
compensate for the mismatch caused by imperfect modeling.

Moreover, we find that increasing the distance between the target
and transceiver array significantly degrades the imaging quality due
to reduced angular resolution. To avoid sharp decay in imaging
quality, we dynamically adapt the imaging resolution according to
the distance to the target.

We implement our joint optimization algorithm, then develop a
prototype by 3D printing the optimized metasurface and assembling
it with an array of commodity speakers and microphones. Refer to
[11] for our demo video.

Our contributions can be summarized as follows:
• We develop an end-to-end framework that jointly optimizes trans-

mission signal, beamforming, metasurface, and imaging algo-
rithm to minimize the error of reconstructed images. To the best
of our knowledge, this is the first system that realizes high-quality
acoustic imaging on low-cost IoT devices without device or target
movement.

• We design a novel physics-informed image reconstruction algo-
rithm to enhance the quality of images especially under high
noise, and achieve good quality and fast convergence.

• We propose an effective scheme to adapt imaging resolution
across varying distances.

• We implement a prototype and conduct extensive evaluation to
demonstrate the effectiveness of the imaging capabilities. Our
results demonstrate that MAJIC out-performs the baselines (w/o
metasurface) by 22.6% to 83.1% in root mean square error (RMSE)
reduction. We further show our imaging algorithm out-performs
the traditional ADMM (using our optimized metasurface and
beamforming) by 66.5% in RMSE reduction, and the adaptive res-
olution scheme increases imaging distance from 30𝑐𝑚 to 135𝑐𝑚.
Our system out-performs SPiDR [5] by 88.42% and out-performs
[52] by 80.75%. Moreover, our evaluations in various real-world
scenarios, including occlusion, gesture recognition, and scene mi-
gration, demonstrate the practical applicability and effectiveness
of MAJIC.

2 RELATED WORK
Acoustic sensing: Acoustic signals are increasingly used for wire-
less sensing as they are supported by many devices, such as smart-
phones, smart speakers, computers, and smart TVs etc. Various
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Table 1: Summary of acoustic imaging systems using IoT de-
vices.

Microphones Speakers Distance Movement RMSE
AIM [28] 1 1 <50cm Yes \
SPiDR[5] 1 1 <20cm Yes ≈0.2
MAJIC 4 6 <135cm No 0.04

acoustic sensing systems have been developed based on correla-
tion (e.g., [34, 36]), FMCW (e.g., [26, 33, 48]), Doppler shift (e.g.,
[51]), phase (e.g., [13, 49]), or Angle of Arrival (e.g., [29, 41, 47]).
Machine learning has also been applied to acoustic sensing (e.g.,
[27, 29]). Existing acoustic sensing work mostly focuses on sensing
location and movement trajectory by treating the target as a single
point. Imaging requires more detailed geometry shape, which is
more challenging than tracking.

Acoustic imaging: Acoustic imaging has been widely studied,
because its greater integration, compactness and portability of IoT
devices compared to RF signals, such as Wi-Fi [35] and mmWave [7].
However, achieving accurate acoustic imaging on IoT devices is not
trivial. For example, [15] leverages 120 transceivers and 3.2𝑘𝐻𝑧
bandwidth to achieve high resolution. Since most commodity IoT de-
vices have only a few speakers and microphones, we cannot directly
apply these approaches. To enable acoustic imaging on IoT devices,
some advanced works have been proposed, as shown in the Table 1.
AIM [28] brings acoustic imaging to a mobile phone by letting a
user hold a phone to swipe across an object to simulate multiple
transceivers. However, it is not convenient and sometimes not feasi-
ble to move the mobile for imaging purpose (e.g., in smart speakers).
SPiDR [5] creates a stencil and passes transmission signals from the
speaker through multiple tubes, enhancing spatial sensing using mul-
tipath encoding, and further uses robot movement to stack multiple
frames for imaging. Different from [5], we combine the powerful
wavefront shaping of the metasurface with dynamic adaptation of
a small transceiver array to create rich beam patterns and generate
diverse measurement data without movement of a device or target.
We further design effective imaging reconstruction algorithm and
adapt resolution to achieve high imaging quality under high noise
and from a large distance.

Acoustic metasurface: Acoustic metasurface research primarily
focuses on passive designs, often using coiling-up designs, Helmholtz
resonators, or membrane types. Active acoustic metasurfaces, as in-
dicated in prior studies [10, 18, 22], tend to be larger and more
costly. For affordability and simple deployment, we use the coiling-
up passive structure, chosen for its compact design and 3D printing
compatibility. Unlike the bulkier Helmholtz resonators or the more
complex membrane structures, it’s easier to produce. The coiling-up
structure [25, 31, 32] manipulates the phase of outgoing acoustic
signals by configuring varied coiled paths within each cell. For in-
stance, to achieve beamforming in a certain direction, we adjust
the lengths of coiled paths across all cells to compensate for phase
differences in incoming signals. Vari-Sound [31] designed 16 dis-
tinct unit cell structures corresponding to phase offsets from 0 to 15
times 2𝜋/16. The coiling-up structure is simple and easy to manu-
facture through 3D printing and is low cost and easy to implement.
Therefore, considering the ubiquity and low cost of IoT devices, we

adopt coiling-up structure as the unit cell, assembling various unit
cells into a metasurface based on our optimization outcomes. If our
optimization indicates that cell (𝑖, 𝑗) should have a phase offset of 𝑝,
we position the unit cell with the phase offset closest to our desired
value at that location. Different from [31], which focuses on unit
cell design (i.e., microscopic design), we focus on optimizing the
metasurface phase profile (i.e., macroscopic design). Different from
[52], which focus on increasing SNR in a certain direction, we focus
on optimizing the imaging quality by creating rich beam patterns
(i.e., high rank of the measurement matrix).

3 BACKGROUND AND PRELIMINARY
In this section, we first introduce the basic idea of acoustic imaging
using compressive sensing and the concept of acoustic metasurfaces.
Then, we provide the intuition behind using acoustic metasurfaces
for imaging.

3.1 Imaging using Compressive Sensing
Consider the signal 𝑥𝑖 (𝑡) from 𝑁 pixels of the target arrive at 𝑀
microphones at a distance 𝑑𝑛𝑚 . The signal received by each micro-
phone can be derived as follows:

𝑦𝑚 (𝑡) =
𝑁−1∑
𝑛=0

𝑒−𝑗2𝜋 𝑓
𝑑𝑛𝑚
𝑐

𝑑𝑛𝑚
𝑥𝑛 (𝑡 − 𝑑𝑛𝑚/𝑐) (1)

where 𝑦𝑚 (𝑡) is the sound pressure at the𝑚𝑡ℎ microphone at time 𝑡 ,
𝑐 is the acoustic signal propagation speed, and 𝑥𝑛 (𝑡) is the reflected
signal from the 𝑛𝑡ℎ target at time 𝑡 .

The above relationship can also be captured using the following
matrix form:

𝑦 = 𝐴𝑥 + 𝑒 (2)

where 𝐴 stands for a 𝑀 × 𝑁 measurement matrix, defined as:

𝐴𝑛𝑚 = 𝑒−𝑗2𝜋 𝑓
𝑑𝑛𝑚
𝑐

𝑑𝑛𝑚
, 𝑦 is an 𝑀 × 1 vector representing the signal from

all microphones, 𝑥 is our target image and reshaped to an 𝑁 × 1
vector, and 𝑒 represents Additive White Gaussian Noise (AWGN).
𝑥 is a greyscale vector, which denotes the fraction of signal that is
reflected by the target at each position. Due to the limited number of
transceivers available on the low-cost IoT devices, acoustic imaging
is typically an under-constrained inference problem, which may have
an infinite number of solutions.

Compressive sensing can be used to reconstruct the image 𝑥 if
𝑥 or some transformation of 𝑥 (e.g., discrete cosine transforma-
tion (DCT)) is sparse. In this case, the image can be reconstructed
by solving the following optimization problem:

argmin
𝑥

∥𝑥 ∥1 𝑠 .𝑡 . ∥𝐴𝑥 − 𝑦∥2 < 𝜖 (3)

where ∥𝑥 ∥1 leverages the sparsity prior and ∥𝐴𝑥 − 𝑦∥2 < 𝜖 en-
forces the accuracy of the reconstructed image. One can use iterative
algorithms to solve this problem. In practice, the reconstruction er-
ror depends on the measurement matrix, noise, and the number of
unknowns (i.e., pixels).

3.2 Measurement Matrix
The measurement matrix in the imaging task is determined by the
channel, as shown in Eq. 1. The channel is dictated by two key pa-
rameters: frequency 𝑓 and distance 𝑑𝑛𝑚 between each target position
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and receiver. If the measurement matrix 𝐴 satisfies the Restricted
Isometry Property (RIP) [9, 39], then compressive sensing can be
applied to accurately reconstruct the image.

In practice, it can be difficult to verify if a matrix satisfies the
RIP property. Instead, we can consider using the rank of 𝐴 as an
approximation [8]. A larger rank suggests more linearly independent
constraints for solving the optimization problem, and is preferred.

We conduct an empirical evaluation to assess the impact of mea-
surement matrix rank 𝐴 on image reconstruction error, measured
using Root Mean Square Error (RMSE). As illustrated in Figure 2 (a),
as the effective rank of matrix 𝐴 increases, the RMSE consistently
decreases. Here, the effective rank is defined as the count of top
singular values that collectively represent 99% of the total energy.
This measure is preferred over strict rank determination because
small singular values, although non-zero, may contribute minimal
new information to the image reconstruction process. The observed
monotonic relationship between RMSE and effective rank justifies
the use of effective rank as a metric to quantify the effectiveness
of the measurement matrix. Such well-known ill-posed problem
leads to the need for carefully designed solutions, and the problem
similarly often arises in channel estimation tasks [38].

There are two methods to increase the rank of the measurement
matrix: increasing the number of transccivers or using more frequen-
cies. As shown in Figure 2 (b), the effective rank increases with
the number of frequencies, as well as the number of transccivers.
But the benefit of increasing the number of frequencies tapers off
after reaching a threshold because using more frequencies than the
threshold yields linearly dependent constraints. Therefore, the per-
formance of traditional acoustic imaging is limited by the number of
transceivers, which is rather small on a typical IoT device.

However, to reconstruct a reasonably sized image with depth in-
formation, such as 10 × 10 × 10, we require both 40 speakers and 40
microphones over 20 frequencies, which is unaffordable. In compar-
ison, a typical IoT device with up to 6 speakers and microphones
has a rank of only 38 using 20 frequencies. Further increasing the
number of frequencies does not reduce the RMSE. These results
indicate that it is necessary to develop additional mechanisms to
generate an appropriate measurement matrix for acoustic imaging.

3.3 Impact of Acoustic Metasurface
Acoustic metasurface shapes acoustic fields using a carefully de-
signed yet low-cost passive physical structure. Metasurface design
involves two parts: 1) microscopic design, which determines a unit
cell structure, and 2) macroscopic design, which determines the
phase map across the entire metasurface (i.e., which type of unit
cell is placed at each location of the metasurface). We use the unit
cell structure proposed in [31, 32] for the microscopic design. The
microscopic design details are shown in Figure 3, in which there are
two distance values 𝑑1 and 𝑑2 that determine its amplitude and phase
response. It discretizes the unit cells into 16 types (e.g., 0, 1/162𝜋 ,
2/162𝜋 ..., 15/162𝜋). Our joint optimization framework introduced
in Section 4 will determine the macroscopic structure, which places
the cells at appropriate positions to generate the desired beams.

The acoustic metasurface enhances the degree of freedom in both
spatial and frequency domain for us to control the measurement
matrix. Figure 2 (c) compares the effective rank with and without
metasurfaces. We observe that using a metasurface significantly
increases the rank under the same number of transceivers. For ex-
ample, after the convergence, the effective rank increases from 60
without metasurface to 204, 297, and 442 using 8x8, 16x16, 32x32
metasurfaces, respectively. Their ranks come close to using the cor-
responding sizes of phased array. For example, the ranks of 8x8,
16x16, 32x32 speakers are 210, 379, and 509, respectively.

Figure 4 further compares some examples of acoustic channels
with and without metasurfaces in the x-y plane. A small phased
array alone has a very coarse beam pattern (Figure 4 (a)). Adding
a 16x16 metasurface enriches the beam pattern (Figure 4 (b)). The
richness of its beam pattern is just slightly lower than that of a 16x16
speaker array (Figure 4 (c)). These observations indicate that using
passive metasurfaces effectively turns a small-scale phased array into
a larger array while maintaining very low costs, thereby increasing
the effective rank.
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Figure 5: Channel modeling for imaging.

4 MAJIC DESIGN
In this section, we introduce our problem formulation and describe
our system design.

4.1 Problem Formulation
As shown in Figure 5, let 𝐻𝑡,𝑚 denote the acoustic channel from
the speaker array to the metasurface, where 𝐻𝑡,𝑚 (𝑖, 𝑗) is the channel
from the 𝑖-th speaker to the 𝑗-th metasurface cell. Similarly, we
define 𝐻𝑚,𝑟 as the channel from the metasurface to the microphone
array. Suppose the target of interest is within a given 3D imaging
area 𝑂 . This is not a strong assumption, as the 3D imaging area
can be redefined or sufficiently large enough to ensure it includes
the target. Then we define another channel matrix 𝐻𝑚,𝑜 , where
𝐻𝑚,𝑜 ( 𝑗, 𝑘) denotes the channel from the 𝑗-th metasurface cell to the
𝑘-th grid in the 3D area. Note that if the 𝑘-th grid does not contain
the target, there is no reflection from this grid. Similarly, we define
𝐻𝑜,𝑚 , where 𝐻𝑜,𝑚 (𝑘, 𝑗) denotes the channel from the 𝑘-th grid in
the 3D area to the 𝑗-th metasurface cell. Finally, we let𝑤 denote the
speakers’ beamforming for a specific frequency.

Based on the above definitions, the received signals after going
through speakers’ beamforming, metasurface manipulation, and
microphones’ combining become as follows:

𝑅𝑚 = 𝐻𝑚,𝑟𝑀 · 𝐻𝑜,𝑚𝑂 · 𝐻𝑚,𝑜𝑀 · 𝐻𝑡,𝑚𝑤 + 𝑒 (4)

𝑀 denotes the manipulation of each metasurface cells on acoustic
signals (i.e., signal attenuation and phase delay) and · denotes dot
product. We use a dot product between the metasurface 𝑀 and
incoming signal because each metasurface cell manipulates multi-
path signals coming through the cell in the same way regardless of
which path the signal comes from. Similarly, we use a dot product
to capture the interaction between the incoming signal and object. If
the metasurface’s configurations are fixed, one can infer our target
object 𝑂 based on the value of all the other terms. Note that all
the channel matrices, including 𝐻𝑡,𝑚 , 𝐻𝑚,𝑜 , 𝐻𝑜,𝑚 , 𝐻𝑚,𝑟 , are known
based on the relative position among the transceivers, metasurface

𝑀 , and the 3D imaging area. Specifically, 𝐻𝑖, 𝑗 = 𝑎(𝑑𝑖, 𝑗 )𝑒−𝑗2𝜋 𝑓
𝑑𝑖,𝑗

𝑐 ,

where 𝑑𝑖, 𝑗 is the distance from the source 𝑖 to the destination 𝑗 , 𝑐 is
the propagation speed of acoustic signals, and 𝑎(𝑑𝑖, 𝑗 ) is the amount
of signal attenuation at the distance 𝑑𝑖, 𝑗 . Moreover, Eq. 4 can be
further simplified as follows:

𝑅𝑚 = 𝐻𝑚,𝑟𝑑𝑖𝑎𝑔(𝑀)𝐻𝑜,𝑚𝑑𝑖𝑎𝑔(𝐻𝑚,𝑜𝑀 · 𝐻𝑡,𝑚𝑤)𝑂 + 𝑒
= 𝐴𝑚 (𝑀,𝑤)𝑂 + 𝑒 (5)

where 𝐴𝑚 (𝑀,𝑤) is the measurement matrix for a specific frequency.
To improve imaging performance, we try to suppress the channel
noise and accumulate more constraints in Eq. 5.

Use beamforming at receiver side: Channel noise has signifi-
cant impact on the image reconstruction error. An effective approach
is to leverage multiple microphones at the receiver side, where beam-
forming can be used to harness spatial diversity and suppress channel
noise. Let 𝐷 denote the microphones’ beamforming codebooks that
consists of multiple weights, and 𝑅𝑚 denote the received signal at
all microphones. We have 𝑅 = 𝐷𝑅𝑚 to combine the received signals
across microphones. For each frequency, the codebook size is equal
to the number of microphones, since further increasing it does not
yield new information due to linear dependence.

Use metasurface at multiple frequencies: A simple way to ob-
tain more constraints is to use frequency diversity. However, as
shown above, the benefit of frequency diversity is limited by the
number of speakers and microphones. We jointly design a meta-
surface and the speakers and microphones’ beamforming across
multiple frequencies. To achieve this, we first need to derive the
impact of the metasurface at different frequencies, including the
phase shift and amplitude attenuation. The phase offset introduced
by the metasurface can be directly calculated from the propagation
distance of each metasurface cell’s internal structure. To derive the
impact on the amplitude, we observe the metasurface is designed to
achieve close to 100% penetration at 20𝐾𝐻𝑧 (i.e., |𝑀𝑓 =20𝑘𝐻𝑧 | = 1),
and its penetration decays at other frequencies. This physical loss
is complex to analyze. Therefore, we use COMSOL [3] (a finite-
element-based multi-physical simulator) to simulate the impact of
each of 16 different metasurface cells from 18𝑘𝐻𝑧 to 20𝑘𝐻𝑧 and
generate a lookup table to record the resulting amplitude. We use this
frequency range since it is inaudible and also supported by commod-
ity devices. Since we employ both transmit and receive beamforming,
our final measurement matrix can be denoted as 𝐴(𝑀,𝑊 ,𝐷).

Convert complex-valued matrix to real-valued matrix: Our
formulation is derived in frequency domain, so that we can capture
the impact of frequencies on the metasurface and the channel prop-
agation model. As a result, 𝐴(𝑀,𝑊 ,𝐷) is complex-valued, which
affects the image reconstruction process in two aspects: (i) most
compressive sensing algorithms are developed for real-valued mod-
els [30] and (ii) complex-valued vectors are more likely to be linearly
dependent since a linear multiplier can introduce a rotation and align
two otherwise independent complex-valued vectors. We observe
that all entries in our image 𝑂 have values between 0 and 1, which
are then multiplied by the real and imaginary parts of 𝐴(𝑀,𝑊 ,𝐷)
separately. Therefore, we construct new 𝑀 and 𝑅𝑚 by stacking the
real and imaginary parts from the original 𝑀 and 𝑅𝑚 , resulting in
a real-valued model and effectively doubling the rank of the initial
complex-valued measurement matrix.
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Figure 6: Joint optimization framework.

4.2 System Overview
As shown in Figure 6, to achieve high-quality imaging, we propose a
joint optimization framework that determines the codebooks𝑊 and
𝐷 across all frequencies and the metasurface𝑀 to minimize imaging
error. This involves two aspects: (i) optimizing the measurement
matrix, and (ii) reconstructing images using a physics-informed
neural network. We integrate these two together to derive imaging
error, which is then back propagated to update learnable parameters.
Moreover, we introduce a scheme to adapt the imaging resolution
according to the distance to avoid sharp decay in image quality.

4.3 Image Reconstruction
In this section, we describe how to reconstruct images.

4.3.1 Image inference model. When the constraints are insuf-
ficient to yield a unique solution, we need to leverage additional
information about the object. One commonly used regularization
term is sparsity, which indicates the target occupies a small portion
of the 3D imaging area. This could be enforced by selecting an
appropriate imaging region. This leads to the following optimization
problem:

�̂� = argmin
𝑂

∥𝐴(𝑊,𝑀)𝑂 − 𝑅∥22 + 𝛼 ∥𝑂 ∥1 (6)

where ∥𝑂 ∥1 is a commonly used 𝐿1 norm to promote the sparsity in
𝑂 and 𝛼 captures the relative importance of the sparsity vs. fitting
error. [12] shows that the solution with the minimal 𝐿1 norm usually
coincides with the sparsest solution for under-determined linear
systems. Alternatively, we can also apply the sparsity regularization
to the linear transformation of 𝑂 (e.g., 𝐷𝐶𝑇 (𝑂)) in case the target
occupies a large portion of the imaging area. In the interest of brevity,
the following description uses ∥𝑂 ∥1 as the regularization term. We
evaluate the sparsity regularization applied to both 𝑂 and 𝐷𝐶𝑇 (𝑂).

4.3.2 Classic ADMM imaging algorithm. The image reconsruc-
tion problem can be solved in a number of ways. A commonly used
approach is ADMM. It is an iterative method that optimizes one
variable at a time in each iteration while fixing the other variables [6].
We can rewrite Eq.6 as follows:

min
𝑂,𝑧

∥𝐴(𝑀,𝑊 ,𝐷)𝑂 − 𝑅𝑚 ∥22 + 𝛼 ∥𝑧∥1

𝑠 .𝑡 .𝑂 − 𝑧 = 0
(7)

The ADMM algorithm is based on the 𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑖𝑎𝑛:
𝐿𝛼,𝜌 = ∥𝐴(𝑀,𝑊 ,𝐷)𝑂 − 𝑅𝑚 ∥22 + 𝛼 ∥𝑧∥1

+ 𝜇𝑇 (𝑂 − 𝑧) + 𝜌

2
∥𝑂 − 𝑧∥22

(8)

and performs sequential minimization of the 𝑂 and 𝑧 variables fol-
lowed by the following dual variable updates:
𝑂𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛

𝑂

{∥𝐴(𝑀,𝑊 ,𝐷)𝑂 − 𝑅𝑚 ∥22 +
𝜌

2
∥𝑂 − 𝑧𝑘 + 𝑢𝑘 ∥22}

𝑧𝑘+1 = S(𝑂𝑘+1, 𝑢𝑘 ) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑧

{𝛼 ∥𝑧∥1 +
𝜌

2
∥𝑂𝑘+1 − 𝑧 + 𝑢𝑘 ∥22}

𝑢𝑘+1 = 𝑢𝑘 +𝑂𝑘+1 − 𝑧𝑘+1

(9)

for some arbitrary 𝑂0 ∈ R𝑛, 𝑧0 ∈ R𝑛, and 𝜇0 ∈ R𝑛 and 𝑢 =
𝜇
𝜌 .

S(·) is a sparsity term based on domain knowledge (e.g., S(·) =

∥𝑧∥1). Compressive sensing solves the under-determined inverse
problem by leveraging the sparsity assumption, and incorporates this
assumption during the update of 𝑧𝑘+1. 𝜌 and 𝛼 are hyperparameters
used to adjust the importance of the fidelity term and sparsity term
during optimization.

Generally, the classic ADMM algorithm can produce satisfac-
tory reconstructed images, but it still has several issues in practice.
First, the hand-picked priors (i.e., the sparsifying transform S) and
hyperparameters (i.e., 𝛼 and 𝜌) may not work well in our scenar-
ios. Additionally, it takes hundreds of iterations to converge, which
results in long running time.

4.3.3 Physics-Informed Image Reconstruction. We replace
the classic ADMM algorithm with its neural-enhanced unrolled ver-
sion to solve this inverse problem, which we call physics-informed
learning model. It has two parts: unrolled ADMM with learnable
layers and followed by a refinement network. The unrolled ADMM
performs the bulk of image reconstruction and includes knowledge
of the forward physical model, while the refinement nework denoises
the image and corrects model mismatch errors.

Unrolled ADMM. The structure of our unrolled ADMM is in-
spired by ADMM-Net [44], which unfolds each iteration of tra-
ditional ADMM into a layer with learnable hyperparameters. As
shown in Figure 7, our design goes a step further by replacing the
sparse prior with a CNN, and learning imaging priors from imaging
process in a data-driven manner. The intuition behind is that the
sparsity may not strictly hold in real images and it is best to directly
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learn a prior from real data; using a prior from real data can enhance
the image quality and speed up inference. Therefore, we have a
ADMM layer for each iteration, with the hyperparameter 𝜌 and the
learnable CNN N . More specifically, the update equation in Eq. 9
becomes:

𝑧𝑘+1 = N(𝑂𝑘+1, 𝑢𝑘 ) (10)

Eq. 10 does not impose sparsity constraints when updating 𝑧𝑘+1.
Since we no longer use the sparsity term ∥𝑧∥1, the hyperparameter
𝛼 is also removed.

Our unrolled ADMM algorithm has several advantages over
ADMM: 1) it uses a prior from real data, which is better than hand-
crafted sparsity regularization, thereby enhancing the imaging qual-
ity; 2) each layer in our neural network is associated with its own
hyperparameters (e.g., step size and penalty parameters) and these
hyperparameters are learned from real data, whereas the correspond-
ing parameters in ADMM are set in an ad hoc manner and fixed
during the iteration process, which slows down the convergence. For
example, it takes 8 iterations for our network to converge, while
ADMM takes over 200 iterations to converge.

Refinement Network. To enhance the algorithm’s robustness against
noise and further correct mismatch errors caused by imperfect model-
ing, we concatenate our unrolled ADMM network with a refinement
network U using a structure similar to UNet [40]. To accommodate
our data format and enhance efficiency, our refinement network con-
sists of a 3-layer encoder concatenated with a 3-layer decoder and
outputs a 1D vector, which is then reshaped to the desired imaging
dimensions (e.g., 10 × 10 × 10 3D images). Such a design effectively
improves system robustness since it is well-suited for noise reduc-
tion in images, thanks to its capability to capture detailed features
through skip connections and hierarchical processing.

Training. To improve the actual system while minimizing the
need for extensive dataset collection, we use real images from pub-
lic datasets like FashionMNIST [50] to train our physics-informed
model. The MSE is computed between the reconstructed images and
the ground-truth images, as demonstrated below:

min
{𝜌,N,U}

𝐿 =
1
𝑁
∥𝑂 − �̂� ∥22 (11)

where 𝑁 is the number of grids in a 3D scene. Then we back-
propagate the error to update all learnable parameters. Since the
training objective is to directly minimize the distance to the ground

truth image instead of intermediate indicators, the quality of re-
constructed images can be significantly optimized. Note that we
only use the existing image dataset for training, and use our testbed
measurement for evaluation.

4.4 End-to-End Optimization
In this section, we build an end-to-end optimization framework to
jointly optimize the imaging algorithm and the measurement matrix
(i.e., the metasurface design 𝑀𝑓 =20𝑘𝐻𝑧 , codebook for speakers𝑊
and microphones 𝐷 across all frequencies). We first initialize the
measurement matrix by minimizing the coherence of the matrix.
This allows us to quickly obtain a reasonable measurement matrix
as a starting point. Then, we concatenate the measurement matrix
optimization with the image reconstruction and iteratively optimize
them in an end-to-end manner.

4.4.1 Initialization of Measurement Matrix. Before the end-
to-end optimization, we initialize 𝐴(𝑀,𝑊 ,𝐷) by minimizing the
coherence of the matrix. The coherence measures the maximum in-
ner product between any two columns of a matrix. Matrices with low
coherence tend to be easier to invert and can lead to better reconstruc-
tion error in compressive sensing. Therefore, we use this property
to increase the diversity of 𝐴(𝑀,𝑊 ,𝐷) so that each measurement
provides new information. The coherence-based optimization can
be modeled as min𝑖≠𝑘

∑
𝐺𝑖𝑘 , where 𝐺𝑖𝑘 = 𝐴(𝑀,𝑊𝑖 )𝑇𝐴(𝑀,𝑊𝑘 )

computes the correlation between the 𝑖-th and 𝑘-th rows in the mea-
surement matrix. We can solve this optimization problem using a
simple gradient descent approach and ignore the physical constraints
on the tunable parameters for simplicity, as shown in Eq. 11. Note
that we use the coherence as the initialization criteria because it is
easier to optimize than the RIP property or effective rank. As shown
in Figure 2 (a), the RMSE monotonically decreases with the effective
rank. Figure 8 further shows that reducing coherence increases the
effective rank, which justifies that we can minimize the coherence
of the measurement matrix to provide a good initialization.

4.4.2 End-to-End Training. The objective function of end-to-end
training is the same as Eq. 11 and the training process iteratively
performs the following two steps: (1) designing the measurement
matrix and (2) updating the physics-informed imaging reconstruc-
tion network. Step (1) treats the imaging reconstruction network as
known and optimizes 𝑀 and𝑊 , 𝐷. Step (2) treats 𝑀 ,𝑊 , and 𝐷 as
known and optimize the network’s parameters. Then we iterate until
convergence.

During the update of the measurement matrix, the learnable
parameters should satisfy the following constraints: (i) |𝑊𝑖 𝑗 | ≤
1 imposes restriction on the maximum transmission power. (ii)
|𝑀𝑓 =20𝑘𝐻𝑧,𝑖 | = 1 according to [31, 52]. For the channel coefficient
of other frequencies, we use the lookup table derived from COMSOL
as described in Sec. 4.1. (iii)

∑
𝑖=#𝑀𝑖𝑐𝑠 |𝐷𝑖 | = 1 imposes constraints

on the sum of each set of beamforming weights.
Similar to traditional neural network training, we solve this op-

timization problem using Adam optimizer in Pytorch, which is an
extended version of the stochastic gradient descent algorithm. We
adapt learning rates for different optimization parameters. To en-
force the above constraints, we project the outputs from the Adam
optimizer to the nearest feasible set.
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prove SNR.

The end-to-end optimization framework incorporates the inter-
dependency between optimizing measurement matrix and image
reconstruction by directly minimizing the imaging error, thereby
out-performing coherence-based initialization.

4.5 Adapting Image Resolution for Different
Distances

The imaging quality inevitably degrades with the distance due to
two reasons: (i) reduced SNR and (ii) reduced angular resolution.
To better support imaging across a varying distance, we propose a
novel adaptive resolution image reconstruction scheme.

We scale the resolution between two pixels of the target as a func-
tion of the distance 𝑑 between the target and transceiver. Specifically,
let Δ𝑑 denote the resolution of the reflected pulse (i.e., two closest
peaks in the reflected pulse that can be separated). Let 𝑟 denote the
separation between two closest pixels on an image plane that can be
separated. We have the following relationship: Δ𝑑 =

√
𝑑2 + 𝑟2 − 𝑑

according to Pythagorean Theorem, where 𝑑 denotes the distance
between the closest pixel on the target plane and the transceiver.
Therefore, we have 𝑟 =

√
2Δ𝑑𝑑 + Δ𝑑2 ≈

√
2Δ𝑑𝑑. The intuition be-

hind this equation is that the path length change of two adjacent
pixels should be equal at different ranges to ensure the same re-
solvability (or equivalently, the time delay) of the corresponding
reflected pulses. As shown in Figure 9, since we know the location
of the target imaging area, we can derive the appropriate imaging
resolution based on their relative distance to the transceivers. Note
that one resolution can support a range of distances (e.g., 1𝑐𝑚 res-
olution for imaging within 15𝑐𝑚, and 3𝑐𝑚 resolution for imaging
between 15𝑐𝑚 − 135𝑐𝑚).

In our implementation, we use the end-to-end optimization to
determine the metasurface design and codebook using the finest
resolution for fabrication and deployment. To support a longer dis-
tance, we use the current distance to determine a new resolution.
We then run the end-to-end optimization to derive a new codebook
while fixing the variables associated with the metasurface according
to our deployed setup. This is because the codebook can change
dynamically while the metasurface is fixed after it is manufactured.

5 PERFORMANCE EVALUATION
We describe our implementation and evaluations as follows.

5.1 Implementation
As depicted in Figure 10, our experimental setup includes a meta-
surface, a Bela board [2] as the controller, a 3 × 2 speaker array
with a PAM8406 power amplifier as the transmitter, and a 4 × 1
microphone array as the receiver. The speakers are spaced 25𝑚𝑚
apart horizontally and 44.6𝑚𝑚 vertically, while the microphones are
14𝑚𝑚 apart. We optimized the transmission signal, beamforming
weights, metasurface, and imaging algorithm using our end-to-end
framework described in Section 4.4. The optimization process is
completed on a server equipped with NVIDIA 3090, and the total
optimization time is 4.25 hours. The main cost of optimization time
is due to the joint optimization convergence of the imaging algo-
rithm and the measurement matrix. The metasurface is derived from
the optimization results and physically assembled. Figure 10 (b)
shows the front view of our cost-effective (< 5 dollars) optimized
metasurface, positioned 3𝑐𝑚 from the speaker to maximize signal
transmission. The metasurface has a side length of 15.6𝑐𝑚 and an
area of 240𝑐𝑚2, and can be easily integrated into the shell of a smart
speaker.

For imaging, we place the target within a predefined 3D area and
transmit FMCW signals (18 to 20𝑘𝐻𝑧) at a 48𝑘𝐻𝑧 sampling rate
using our optimized beamforming weights (codebooks𝑊 ) to obtain
measurement constraints. It takes the transmitter 120𝑚𝑠 for a single
scan, allocating 20𝑚𝑠 per beamforming weight. When there is no
object in the imaging area, we pre-record the signal to eliminate the
primary influence of the direct signal. Specifically we record the
signals after putting an object in the imaging area and subtract the
pre-recorded signals. After that, we apply temporal window filter-
ing to remove most of the environmental interference cancellation
outside the imaging area. Next, receiver beamforming (codebooks
𝐷) and FFT are applied to the signals, yielding complex constraints
from frequency bins, each spanning 25𝐻𝑧. With 6 transmitter and 4
receiver beamforming weights, and 81 frequencies, we extract 1944
complex constraints per transmission.

We produce 150 3D-printed objects as the test set for imaging
evaluation, including numbers, letters, and other common patterns.
We evaluate our scheme to image 2D objects (30 × 30) and 3D
objects (10 × 10 × 10). Note that the pattern of our test set images is
completely different from the open source dataset Fashion-MNIST,
where the patterns of Fashion-MNIST are almost clothes, shoes,
etc. Further, in order to ensure that the trained model will not be
overfitted, we let the training be performed on the simulator, and the
testing is performed on the real prototype. Unless stated otherwise,
we place the objects 15cm away from the metasurface and use 1𝑐𝑚
resolution. All results are collected from our testbed.

Before testing MAJIC, we calibrate it to account for the real
interaction between the transceiver and metasurface and to adjust for
any phase and attenuation discrepancies caused by imperfections in
the 3D-printed metasurface cells. The calibration involves two main
steps: first, we create a calibration matrix that captures the difference
between the ideal reflection from a point reflector on an imaging grid
and the actual signal received from the simulation; second, we use 10
random calibration images from our testbed to fine-tune the neural
network in our physics-informed imaging algorithm, addressing any
model inaccuracies. This one-time calibration, typically done during
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manufacturing, allows for straightforward deployment in various
settings without extra work.

In addition, we also compare with stencils in [5] and acoustic
lens in [52]. [5] develops a metasurface as a stencil for imaging.
Following [5], we make a few stencils with a diameter of 20mm
and a height of 30mm. The path lengths of 10 tubes are randomized.
We choose the one that has the best signal diversity distribution
according to [5]. [52] maximizes the SNR in a given direction. For
both schemes, we use the same codewords, speakers, and micro-
phones placement as those in our scheme for comparison. For fair
comparison, all schemes use static setups.

Performance metric: The imaging quality is quantified using root

mean square error (RMSE):
√
(𝑒 − 𝑡)2, where 𝑒 and 𝑡 are the esti-

mated and ground truth values. Although RMSE cannot fully repre-
sent the imaging effect in some special cases, it reflects the system
performance in most cases with reference to the field of computer
vision.

Baseline schemes: Table 2 summarizes the baseline schemes used
in our evaluation for comparison. (a) Without metasurface and beam-
forming. (b) Optimizing speakers’ beamforming. (c) Using a random
metasurface and optimizing speakers’ beamforming. (d) Jointly op-
timizing both metasurface and speakers’ beamforming. (e) Jointly
optimizing speakers’ beamforming and the shared metasurface for
both speakers and microphones. (f) Jointly optimizing beamform-
ing and the shared metasurface for both speakers and microphones.
Note that the microphone is placed at the top of the metasurface
in schemes (c) and (d) to ensure that the reflected signals from the
objects do not pass through the metasurface.

5.2 Overall Performance
We evaluate the performance of schemes (a)-(f) using our testbed.
Figure 11 shows the cumulative distribution function (CDF) of the
RMSE. As expected, scheme (f) performs the best. Some examples
of imaging results with various scheme and depth information are
shown in Figure 14 and Figure 15, respectively. Compared with
scheme (a) to (e), scheme (f) reduces RMSE by 83.1%, 81.4%, 74.8%,
48.11%, and 22.6%, respectively. The benefits of adding beamforming
to the speaker array without metasurface are limited. Its restricted
channel customization capability contributes marginally to the rank
of the measurement matrix. Interestingly, we find that adding a

Table 2: Summary of schemes for comparison.

speaker microphone
beamforming metasurface beamforming metasurface

(a) no no no no
(b) opt. no no no
(c) opt. random no no
(d) joint opt. joint opt. no no
(e) joint opt. joint opt. no joint opt.
(f) joint opt. joint opt. joint opt. joint opt.

randomly-built metasurface for the speaker array is already bene-
ficial. Specifically, compared with (b), (c) reduce RMSE by 27.0%
from 0.222 to 0.162. With the optimized metasurface (scheme (d)),
we can further reduce RMSE by 0.079, which is a 51.2% reduction.
The significant improvement from scheme (d) to (e) highlights the
importance of considering the microphone array in metasurface opti-
mization. One possible explanation is that the signal reflected from
the target is weak, and the optimized metasurface can act as a reflec-
tion signal collector and redirect the reflected signals going through
the metasurface toward the microphone array. The performance can
be further improved by 22.6% using microphone-side beamforming
in the scheme (f), as microphone-side beamforming technology can
reduce the noise of the received signal.

Furthermore, we compare the imaging performance using two
alternative acoustic metasurfaces – the stencil in SPiDR [5] and
acoustic lens from [52] while the other components remain the same
as the scheme (f) (i.e., beamforming and imaging reconstruction).
This allows us to assess the performance of different metasurface
designs. As shown in Figure 12, our approach out-performs the
stencil and acoustic lens by 88.42% and 80.75%, respectively. The
results show the design of a metasurface has significant impact on
the imaging performance and our joint optimization is effective.
In comparison, the metasurface used in SPiDR [5] is ad hoc and
limits its benefit. SPiDR [5] has to resort to robot movement to
extract more constraints for imaging, while our design can achieve
high imaging accuracy using a static setup. The metasurface in [52]
aims to maximize SNR in a given direction and is less effective
for imaging since imaging requires diverse measurements (i.e., a
measurement matrix with a high rank) in addition to high SNR.
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Figure 13: Effect of each component on the measurement matrix.
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5.3 Microbenchmarks
In this section, we evaluate the impacts of various design parameters.

5.3.1 Vary number of transceivers. Figure 13 plots the impact
of varying the number of transceiver antennas. When there is an
optimized metasurface (i.e., scheme (d)-(f)), increasing the number
of speakers and microphones provides additional signal diversity,
resulting in a significant reduction in median RMSE. Specifically, us-
ing scheme (f) with 2, 3, 4, 5, and 6 speakers reduces median RMSE
from 0.18 under a single speaker to 0.139, 0.103, 0.082, 0.064, and
0.041, respectively. Using scheme (f) with 2, 3, and 4 microphones
reduces the RMSE from 0.192 under a single microphone to 0.131,
0.084, and 0.041, respectively. Interestingly, for schemes (a) and (b)
where there is no metasurface, increasing the number of transceivers
yields little performance benefit because without a metasurface the
diversity is too limited to provide sufficient constraints for image
reconstruction.

5.3.2 Vary number of frequencies. Next, we evaluate the impact
of varying the number of frequencies on the measurement matrix. As
shown in Figure 13(c), when using a single frequency, the metasur-
face provides virtually no gain for imaging since the constraints are
too few to make a difference. As more frequencies are used, more
constraints are introduced to the measurement matrix, which can
improve the reconstruction performance, where the median RMSE in
scheme (f) reduces from 0.254 to 0.041 using 81 frequencies. As we
use more than 81 frequencies, the benefits become marginal while
the required length of the sampling window for FFT increases. This
indicates that 81 frequencies are sufficient for our scenario.

5.3.3 Vary metasurface size. As shown in Figure 13(d), increas-
ing the metasurface size from 8 × 8 to 12 × 12, 16 × 16, 24 × 24, and
32 × 32 results in a median RMSE of 0.147, 0.089, 0.039, 0.018, and
0.011, respectively. However, we observe that the marginal benefit
of using a larger metasurface diminishes beyond a certain point. For
instance, the reduction in RMSE from increasing the size from 8 × 8
to 16 × 16 is more significant than that from increasing the size from
16 × 16 to 32 × 32. From the rank perspective, enlarging the meta-
surface and optimizing its configuration can effectively enhance the
effective rank of the measurement matrix. Our optimization reduces
the size of the metasurface, thereby cutting costs and space. For
example, an optimized 16 × 16 metasurface has a rank of 355, which
is close to the effective rank of a 24 × 24 random metasurface – 367,
saving 50% cost and space.

5.3.4 2D images. We evaluate the performance of 3D imaging
in our testbed. Next we consider imaging 2D objects in a simulator
(the only simulation results in our evaluation). Without the depth
information, we can support a larger 2D images. We achieve RMSE
of 0.052 when imaging 30×30 2D objects, and RMSE of 0.075 when
imaging 50×50 2D objects. Figure 21 shows example 50×50 images.
The clear shapes of the reconstructed images show the effectiveness
of our method for high-resolution 2D imaging.

5.3.5 Vary AoA. To evaluate the impact of different angles of
arrival (AoAs), we place targets at positions ranging from 0° to 60°
relative to the center of the transceivers. As shown in Figure 19, as
the AoA increases from 0° to 20°, 40°, and 60°, the median RMSE
increases from 0.041 to 0.077, 0.154, and 0.235, respectively, while
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Figure 21: Imaging results of 50 × 50 (2500 pixels) with 0.5𝑐𝑚
resolution.

the SNR decreases from 47.095 to 22.792, 7.550, and −2.567𝑑𝐵, re-
spectively. The results show that even if the object is not strictly
aligned with the predefined imaging grid, our system can accurately
image an area within 30°. However, as the angle increases, the imag-
ing performance degrades rapidly due to less reflection from the
target.

5.3.6 Performance of Image Reconstruction Algorithm. We
further compare with four commonly used algorithms in our testbed
using our optimized metasurface and beamforming: (i) linear regres-
sion (LR), (ii) traditional ADMM, (iii) UNet (integrating preceding
fully connected layers), and (iv) ADMMNet. Figure 16 shows that
all algorithms incur increasing RMSE as the SNR decreases. Our
reconstruction algorithm consistently achieves the lowest RMSE by
leveraging learned imaging prior and denoising neural networks. In
comparison, ADMMNet only has the learnable hyperparameter but
lacks a denoising step, while UNet has remarkable denoising capa-
bility but lacks prior learned from data. Therefore, their performance
is considerably worse. Figure 22 show examples of reconstructed
images, further illustrating our imaging algorithm’s benefit.

Next we evaluate the impact of end-to-end optimization. As
shown in Figure 17, compared to the methods without end-to-end
optimization (i.e., using only coherence-based optimization), our
algorithm reduces the median RMSE from 0.152 to 0.041, which is
73.1% improvement. The results indicate that jointly optimizing the
measurement matrix and reconstruction algorithm is crucial. We also
observe that due to the sufficient sparsity of our targets within the
3D imaging area, employing the DCT does not provide additional
gains. For generality, we can still consider using DCT.

Moreover, we evaluate the overhead of our reconstruction algo-
rithm, including both time and storage. As shown in Table. 3, our
algorithm requires 9.7 ms to reconstruct an image, which is much

Table 3: Time to reconstruct 10×10×10 images using a GeForce
RTX 3090 on the server.

LR ADMM UNet ADMMNet Ours

Time (ms) 4.4 175.1 1.7 9.3 9.7
Model size (MB) \ \ 116.2 1.8 3.6

faster than the 175.1 ms required by the traditional ADMM. Al-
though the frame rate of our imaging is still limited by the scanning
time at the transmitting end, we can effectively replace speakers with
more microphones for high frame rate (i.e., ≥ 30 FPS) to support
real-time applications with higher frame rates.

5.3.7 Effectiveness of Adaptive Resolution Scheme. We con-
duct experiments with targets at varying distances from 15𝑐𝑚 to
165𝑐𝑚 away from the transceivers. Note that our 4.5𝑊 device range
can be further extended using higher power devices, like Apple’s
HomePod with 33𝑊 + power. We use grid patterns of 1𝑐𝑚, 2𝑐𝑚, and
3𝑐𝑚 resolutions for imaging. The codebooks for transceivers are
re-optimized at 60𝑐𝑚 and 135𝑐𝑚 for 2𝑐𝑚 and 3𝑐𝑚 resolutions. Fig-
ure 18 shows RMSE increases with distance across all resolutions.
Our system achieves up to 30𝑐𝑚 distance for high-quality imaging
(RMSE < 0.1) at 1cm resolution. Without codebook re-optimization,
the maximum distances for 2𝑐𝑚 and 3𝑐𝑚 resolutions are 45𝑐𝑚 and
90𝑐𝑚, respectively. Optimization extends the ranges to 60𝑐𝑚 and
135𝑐𝑚 for 2𝑐𝑚 and 3𝑐𝑚 resolutions, respectively. Re-optimizing for
larger distances may slightly reduce performance at closer ranges
(< 30𝑐𝑚), but this is minor compared to the more significant per-
formance gain at a longer distance. If our imaging area occupies
close and far away areas, we may use different grid sizes at different
distances. In conclusion, our adaptive resolution strategy maintains
a low RMSE across varying distances.

5.3.8 Impact of environments. The performance of the time
window filtering algorithm may be affected by scene changes outside
the imaging area. Therefore, we evaluate our system’s robustness in
five different environments, including the office’s A to C, corridor,
and outdoors. Office A is an unoccupied conference room; Office B
is the same size as Office A, with people walking around, and Office
C has a smaller area. The results demonstrate that our system has
excellent environmental adaptability with only one pre-calibration
at one location. On the other hand, changes outside the imaging area
have little impact on system performance. As shown in Figure 20,
our system can maintain robust imaging capabilities in different
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Figure 24: The performance of ges-
ture recognition.

scenarios, with mean RMSE of 0.052, 0.063, 0.052, 0.064, and 0.049,
respectively. Moreover, the low RMSE in Offices B and C indicates
that our background interference elimination method can effectively
reduce interference outside the imaging area.

5.3.9 Impact on low-frequency sound. We place microphones
and speakers at opposite ends of a metasurface to assess its impact on
the attenuation of low-frequency sounds. Specifically, we transmit
chirp signals ranging from 100𝐻𝑧 to 4𝑘𝐻𝑧 at 30-degree intervals
within an incidence angle range of 0 to 180 degrees. Compared to
scenarios without the metasurface, the average energy attenuation at
various angles is 0.53dB. These results indicate that the metasurface
minimally impacts applications involving low-frequency sounds,
such as music playback.

5.4 Applications
5.4.1 Imaging under occlusion. Acoustic signals can penetrate
objects to some extent, which makes it possible to image under
occlusion (e.g., covered by plastic or cloth bags). Figure 23 shows
examples of the reconstructed images with various materials cov-
ering the target. The reconstructed images show that we can still
clearly distinguish the shape of the targets. This potentially helps
identify dangerous items (e.g., weapons) under a covering.

5.4.2 Gesture recognition. Furthermore, we demonstrate the
potential of our system for privacy-preserved gesture recognition,
where the hand is placed within a pre-defined imaging area. Fig-
ure 24 shows the imaging results of five gestures. We further employ
SVM to classify the five gestures and observe the high classifica-
tion accuracy. This enables a touchless user interface and is more
privacy-preserving than camera-based solutions.

6 DISCUSSION
Frequency range selection. Our current use of the 18kHz to 20kHz
frequency range is not only because it is inaudible to most people
but also because the metasurface maintains high transmission for
signals within this range. However, this frequency band might be
audible to pets or children, and Chirp modulation could potentially
cause discomfort to them. For a more practical system, we could
mitigate this effect through special modulation technique [45], or opt
for a higher frequency band, such as 24kHz, which can be achieved
by adjusting the size of the units. Additionally, a broader bandwidth
could offer more diversity, but it also raises the design requirements
for the metasurface’s broadband transmission rate. One of our future

directions is to explore metasurfaces that support a wider frequency
range to enhance frequency diversity.
Dynamic imaging. The continuous acoustic imaging of dynamic ob-
jects plays a crucial role and has the potential to catalyze numerous
innovative applications. At present, the relatively short processing
times offered by MAJIC present a promising possibility for acous-
tic imaging to capture videos with the same ease and flexibility
as optical cameras. However, realizing this potential fully involves
overcoming a myriad of challenges. These include not only expand-
ing the imaging space and enhancing the resolution to much finer
scales but also effectively managing the phase variations introduced
by the movement of objects within the imaging field. Such aspi-
rations necessitate a move towards more intricate imaging models
that take into account the dynamics of objects, the devices captur-
ing the images, and even the surrounding environment’s influence
on the imaging process. This complex and layered approach opens
up a new frontier in acoustic imaging research, promising exciting
developments and applications in the future.

7 CONCLUSION
In this paper, we develop a novel end-to-end framework for acoustic
imaging, which jointly optimizes the transmission signal, transceivers
beamforming, metasurface, and imaging reconstruction algorithm.
Our design realizes high-quality acoustic imaging using a small
number of speakers and microphones that are available on typical
low-cost IoT devices. This opens the door to many exciting appli-
cations that we hope to explore in the future, including flexible
user interfaces, activity recognition, weapon detection and medical
diagnosis.
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