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Abstract—Data pertaining to the availability of parking slots
is crucial to the efficient operation of systems designed to
monitor the state of parking spaces. Outdoor parking systems
have been developed using wireless sensors, Internet of Things
(IoT) technology, and cameras. Unfortunately, interference from
electromagnetic fields complicates the tuning of parameters for
detection algorithms and limits accuracy to only 90 percent. In
this study, we investigated these problems by collecting data from
magnetic sensors, light sensors, and LoRa wireless modules used
in the detection transient events (car arrivals and departures)
over a period of 13 months. This led to the design an adaptive
occupancy detection system using a variety of sensors, which can
be deployed with only minimal calibration.

I. INTRODUCTION

Data pertaining to the availability of parking slots is crucial

to the efficient locating of empty parking spaces [1]. Exist-

ing outdoor parking systems are based on wireless sensors,

Internet of Things (IoT) technology [12], and cameras [24].

IoT-based systems developed by Streetline Inc. [17] and in the

SFpark project [14] have been deployed in North America and

European cities. However, interference from electromagnetic

fields [12] causes frequent false positives; i.e., degraded accu-

racy. Discussions with experts in IoT technology revealed that

magnetic sensors are prone to false detections when deployed

as parking nodes. Thus, systems tend to be retrained only in

response to complaints from customers or within a schedule

wherein updates are conducted more frequently than necessary.

Most existing parking solutions dealing with parking oc-

cupancy rely on magnetic sensors to identify the arrival

and/or departure of vehicles. Current state-of-the-art parking

solutions, such as FastPrk [5] and Fastprk2 [20] are reported

to provide accuracy of 95% [6] ∼ 98% [7]; however, these

estimates are based on short-term data collection often within a

laboratory environment [6], [13]. Furthermore, administrators

replaced a FastPrk system deployed in Moscow with another

system after the initial trials [15], citing shortcomings in the

system. The three main challenges in the design of parking

solutions based on magnetic devices are (1) environmental

changes, (2) the spatial characteristics of individual parking

slots, and (3) time-varying factors, such as variations in the

geomagnetic field or dwindling battery life. Maintaining the

accuracy of such systems requires that the model be retrained;

however, existing systems lack a mechanism by which to alert

operators when retraining is required. Thus, we conducted an

empirical study to identify challenges and limitations in the use

of magnetic, light-based, and LoRa wireless modules for the

detection of transient events (including events of car arrivals

and departures) in a real-world environment. Long-term multi-

slot deployment was conducted to reveal weaknesses in current

learning-based parking systems. To the best of our knowledge,

previous reports on these systems employed learning-based

methods, and none of them discussed system performance

over extended durations or in different locations. Our long-

term assessment of sensors in multiple parking spaces revealed

the need for an adaptive occupancy detection algorithm to

complement current state-of-the-art parking solutions.

In this study, we explored the challenges and limitation to

understand the potential design considerations of designing

easy-deployable and manageable IoT-based parking systems.

Through collecting and analyzing the 13-month data collected

from magnetic sensing, light sensing, and LoRa wireless

modules, we propose a feasible adaptive design to enable

easy-deployable parking solutions. The goal of this paper is to

highlight the need of adaptive machine learning schemes when

designing parking occupancy detection system to encourage

major outdoor parking solution providers continuing to enable

future easy-deployable solutions.

The contributions of this study are three-fold. First, we

elucidated the strengths and weaknesses of three major sens-

ing modalities in real-world scenarios. Second, to overcome

imprecision in the collected data, we developed three adaptive

machine learning schemes: model selection, sensor selection,

and failure detection. These machine learning schemes led to

the development of an adaptive occupancy detection system

using three types of sensors in order to eliminate the need for

major calibration. Third, we conducted a series of evaluations

using a variety of metrics (accuracy, precision, recall, and F1-

score) to validate the performance of the proposed adaptive

machine learning schemes in the detection of transient events.



Fig. 1: LoRa sensors and proposed parking nodes. In (a),

only Sender #1 (2nd floor of the building: top) and Sender

#2 (2nd floor of another building: bottom) are presented. In

(c), the node is half-buried in the center of the slot.

II. RELATED WORK

Existing smart parking solutions for outdoor environments

[17], [14], [22], [5] use magnetic sensors to identify the arrival

or departure of cars. In [30], researchers of the pilot SFpark

project listed car models and environmental interference as

challenges in the use of magnetic sensors to detect vehicle

arrivals and departures. Streetline [17] uses camera sensors in

conjunction with or in lieu of in-ground magnetic sensors to

reduce the effects of electrical interference [16]. Unfortunately,

this approach is limited to line-of-sight scenarios and is

susceptible to changes in lighting conditions, thereby necessi-

tating the deployment of a large number of cameras. ADEC

technologies [2] recently announced a parking occupancy

detector that incorporates additional sensors; however, they

have released no details of the proposed system. The inclusion

of additional sensors no doubt improves detection accuracy;

however, it greatly increases power consumption and capital

overhead. Worldsensing [23] recently incorporated server-side

service layers in the development of a new generation parking

system (i.e., Fastprk-2 [20]). This system is based on the

occupancy sensors used in the Fastprk system in conjunction

with advanced signal processing algorithms for the detection

of occupancy using information obtained via data mining. It

is reported to have accuracy of 95% ∼ 98%; however, these

results are based on short-term evaluations under laboratory

conditions [15].

Researchers have used a variety of alternative sensing

techniques, such as passive acoustic array sensors, passive

infrared sensor, RFID, ultrasonic and video image processing

[26], [28], [29]. Unfortunately, some of these devises (e.g.,

RFID, ultrasonic signals, or visual signals) require expensive

overhead installations and on-going maintenance. The fact that

most situations preclude the installation of overhead devices

has led to the development of inductive loops, piezoelectric

cables, and weigh-in-motion sensors [26]. This commonly

requires the cutting of pavement for installation and necessi-

tates the use of multiple detectors. Other solutions involve the

Module Average current Sampling energy (time)

System
Low-power: 22.06uA

Active: 5.54mA
-

Magnetic 2.40mA 12.68mJ (1.6ms)

LoRa
Receiving: 35.88mA
Sending: 76.00mA

Receiving: 1.78J (15ms)
Sending: 3.16J (12.6ms)

Light 3.75mA 745.63mJ (250ms)

TABLE I: Average current and energy drawn by the system,

magnetic sensing, LoRa wireless, and light sensing module.

detection of signals reflected from vehicles (e.g., microwave

radar or ultrasonic ranging sensors); however, this approach

greatly increases power consumption and the such systems

are highly susceptible to environmental interference.

ParkNet [28] uses an ultrasonic rangefinder to detect parking

spot occupancy. Each location is associated with GPS coor-

dinates, thereby making it possible to pinpoint the location

of each car and generate an occupancy map of the entire

city. ParkSense [29] infers unparking events by observing

changes in the Wi-Fi signatures from the mobile phones

of drivers. Unfortunately, these crowd-sourcing approaches

require participation by a substantial proportion of drivers and

are generally less reliable than other methods.

III. EXPERIMENT: LONG-TERM DATA COLLECTION

Our aim was to identify the factors that affect accuracy

in determining the occupancy of parking spaces. Long-term

readings were obtained from magnetic sensors and other low-

cost devices.

A. Experimental Setup

Customized parking nodes were deployed in four adjacent

parking lots on the campus of National Taiwan University

(Fig. 1(a)). To ensure easy deployment and maintenance, we

opted for the single-point deployment of low-cost, low-power

sensors for the detection of transient events. The parking nodes

were housed in a rectangular water-proof case containing a

circuit board powered by four Lithium-ion batteries.

As shown in Fig. 1(b), each circuit board was equipped with

a low-power TI MSP430 microcontroller [21], a Honeywell

HMC5883 3-axis compass sensor [9], a TSL2561 light-to-

digital converter [19], and an ARCT TM1276 LoRa transceiver

module [4]. Table I lists the average current and energy

consumption of the bare system and sensing modules. The

magnetic sensors and light sensors consume far less energy

(12.68 and 745.63 milli-joules) than do the LoRa wireless

modules (3.16 joules for sending and 1.78 joules for receiving

a 4-byte packet). Each parking node was placed in the center

of the parking lot to reduce interference from vehicles in

adjacent lots. Note that numerous low-cost sensing alternatives

are available; however, we selected a combination of sensors

(i.e., a magnetic sensor, a light sensor, and the wireless LoRa

modules) to demonstrate the application of a sensor selection

algorithm to achieve a trade-off between high accuracy and

low power consumption. In the event that other sensors are

used in the parking nodes, it should be possible for the



same sensor selection algorithm to switch between any new

combination of sensors.

A surveillance camera was mounted on an outside wall on

the 7th floor of a nearby building to monitor the parking area.

This data was used as ground-truth information pertaining

to parking events. All recorded footage was streamed back

to a server via a wired link and stored. We envision that

a few internet-connected gateways (IoT gateways) could be

scattered throughout the city in the future, thereby ensuring

reliability in the relaying of data to a central network server. To

emulate this situation, we installed a number of IoT gateways

around the selected parking area to enable the exchange of

messages between nodes and the backend. Three LoRa senders

deployed in two buildings surrounding the area broadcast

messages every 500ms to be received by LoRa modules on

the parking nodes. LoRa Senders #1 and #2 were located on

the 2nd floor of the two building 15 meters from the closest

parking node to emulate gateways deployed in positions at the

same height as street lights. LoRa Sender #3 was located on

the 5th floor of a building at a distance of 40 meters from

the closest parking node. All readings from the sensing and

communications modules were recorded on an on-board micro

SD card and then manually retrieved via a serial interface

every two days

B. Characterizing Transient Events

Between April 2015 and April 2016, we collected 7175

hours of parking data involving 1276 transient events; i.e.,

666 arrivals and 610 departures for an average of 51 arrival

events and 46 departure events per month. The MSP430 micro-

controller sampled readings from magnetic sensors and light

sensors. RSSI values in the header of LoRa packets achieved

a best-effort sampling rate of 250 ms per second. This was

limited by the intensity of the light received by the sensor

[19]. Each transient event was associated with changes in the

patterns read from magnetic sensors, light sensors, and LoRa

wireless modules.

Magnetic sensor: Magnet-based detection methods can be

used identify parking events by responding to changes in the

patterns of signals. Typically, changes in the magnetic field

can be attributed to the movement of a car and the engine

being shut on/off. The large amount of ferrous materials in a

car body means that changes in the magnetic field are easily

affected by vehicles entering or leaving, but also by nearby

cars [3]. In obtaining samples, the sensor decomposes the

Earth’s magnetic field and outputs individual components over

the x, y, and z axes relative to the local coordinate frame of a

compass. Combining the individual components into a vector

makes it possible to obtain an aggregate vector.

Light sensor: Changes in the intensity of incident light at

parking nodes makes it possible to infer the departure or arrival

of a car. This study used a wide light spectrum containing

visible and infrared light, using digital output signals between

0 ∼ 65535 from the broadband channel of a TSL2561 [19].

Placement of a light sensor in the center of a slot would mean

that is intermittently covered by cars entering or leaving the

Fig. 2: Readings collected from a magnetic sensor along the

z axis in two scenarios.

slot. As indicated by the red line in Fig. 3, the digital output

decreased by more than 30000 when a car parked at 47 s.

LoRa module: When a parking node is deployed in the

center of a parking slot, the transmission path between sur-

rounding LoRa senders and the parking node is blocked by

passing cars, resulting in the attenuation of the received signal

strength (RSSI). Thus, the passage of cars can be interpreted

as transient events. Fig. 4(a) shows RSSI values received by

LoRa Sender #1 at a distance of 15 meters, when the parking

slot is occupied, empty, or soon to be occupied by a car (e.g.

the 12 dBm difference in signal strength at 50s).

Characterization of changes in the patterns collected from

the sensors began with a moving average pre-processing step

to filter out corrupted samples. We then extracted feature

segments using a sliding window (empirical-determined 15-

second duration, with 50% overlap). The presence of a car is

determined through the extraction of statistical features (mean,

median, mode, and range). Our aim was to express the central

tendency and statistical dispersion of the magnetic field, light

intensity, and RSSI values as well as all derivatives of the

individual components (or aggregated vectors) within a data

segment. This included a total of 108 magnetic features, 30

light features, and 90 LoRa features (i.e., 30 LoRa features

for each sender). Based on these features, the proposed system

adaptively selects a sub-optimal set of features as an indication

of a transient event, as described in Section V-C.

IV. INITIAL OBSERVATIONS: CHALLENGES AND

LIMITATIONS OF EACH SENSING MODALITY

An easy-deployable parking system should provide 24/7

operational coverage and enable the accurate detection of a

range of vehicle models. The long-term data set described

in Section III made it possible to identify factors capable of

interfering with sensor readings: (1) environmental factors, (2)

deployment factors, and (3) target-vehicle factors.

A. Interference Cases Caused by Environmental Factors

Environmental factors, such as weather conditions or nearby

vehicles, can affect magnetic sensors, light sensors, and LoRa

wireless modules.



Fig. 3: Readings collected from light sensors when a car was

parking in a slot (the red line in (a) and (b)), in which

sunlight is gradually blocked by slow-moving clouds (the

blue line in (a)), and intermittently blocked by leaves

moving in a nearby tree (the red line in (b)).

1) Magnetic sensor: The earth’s magnetic field varies with

location and over time. It is also influenced by nearby ferrous-

metal objects (e.g., bicycles or adjacent vehicles) [3]. The

impact on the magnetic field varies according to the amount

of ferrous metal in vehicles and the distance from the parking

node. Fig. 2(b) illustrates the effects of interference from a car

parking in an adjacent slot. Changes in measurements along

the z-axis are non-negligible, which means that they could be

interpreted as a non-normal transient event (Fig. 2(a)).

2) Light sensor: Outdoor lighting conditions are highly

variable. The arrival and departure of cars during the day can

result in dramatic changes in lighting intensity over a very brief

period, as shown by the blue line in Fig. 3(a). As the sun moves

across the sky, the light can also be blocked by stationary

objects. Readings collected by light sensors when a car was

parking in a slot (the red line in Fig. 3(a)), show how sunlight

was blocked by slow-moving clouds (the blue line in Fig. 3(a)),

or intermittently blocked by leaves moving in a nearby tree

(the red line in 3(b)). Observations of previous detection failure

demonstrate that existing methods often produce patterns that

do not necessarily correspond to an actual parking event.

3) LoRa module: Due to multipath effects in the transmis-

sion of radio signals, any objects (e.g., nearby humans or cars)

within a given environment can have an impact on the received

signal strength of LoRa modules. The degree to which RSSI

is altered by vehicles passing nearby (red cross in Fig. 4(b))

tends to be less pronounced than that caused by the arrival or

departure of cars to/from the target slot (blue circles in Fig.

4(b)). Conversely, the degree to which RSSI is altered by the

arrival or departure of target vehicles increases with a higher

baseline RSSI (defined as the RSSI measured by a parking

node that is not covered by vehicles in the target slot).

Fig. 4(b) shows that the change in RSSI caused by the

arrival or departure of a car is more pronounced than that

caused by the arrival or departure of cars in nearby slots when

the baseline RSSI exceeds -90dBm. This is an indication that

RSSI data could be used to indicate the occurrence of transient

events. The presence of human or other environmental objects

can also affect the received signal strength. The degree to

which RSSI changes is determined by the size and location

Fig. 4: Values of RSSI in packets collected by LoRa

modules in a parking node deployed in a target slot under

the following scenarios: (a) RSSI in packets sent by Sender

#1 when the slot was empty (green line), occupied (blue

line), or initially empty and later occupied (red line), and

RSSI in packets sent by Sender #2 when the slot was empty

(dotted green line) or occupied (dotted blue line). (b)

Baseline RSSI vs. change in RSSI of a packet sent from

senders caused by target vehicles or nearby vehicles.

of objects, and this commonly leads to false detections. This

means that a sensor selection algorithm is required to avoid

the effects of unreliable sensing readings, as outlined in the

following section.

B. Interference Caused by Deployment Factors

The re-deployment of the parking nodes every two days led

to slight variations in the orientation of the sensors, and these

effects were particularly pronounced when the devices were

placed in a new parking area.

1) Magnetic sensor: Slight differences in the orientation of

a parking node produces small changes in the magnetic field

projected onto individual components (i.e., x, y, and z axes of

a compass local coordinate frame). Local changes in the local

environment (e.g., nearby bicycles or parked cars) or global

shifts in the earth’s magnetic field can also alter the readings.

A review of the raw data from each deployment revealed slight

variations in the baseline magnetic field readings (i.e., the

magnetic field changed when the slot was empty).

2) Light sensor: The light sensors were housed behind a

transparent acrylic window to protect the parking nodes from

water. Unfortunately, the effects of morning dew or dust on the

window altered the transmittance of light. When transmittance

dropped considerably, the intensity of light reaching the sensor

was insufficient to differentiate transient from non-transient

events.

3) LoRa module: A dipole antenna (as shown in Fig.

1(b)) was placed on the Lora module of the parking node

to transmit/receive signals. Unfortunately, slight variations in

the orientation of nodes resulted in different baseline RSSI

values. Even when we used an omni-directional patch antenna

[18], the location and orientation of the antenna on LoRa

senders (i.e., LoRa gateways) tended to alter the transmission

of signals between senders and parking nodes, which had

a subsequent impact on the RSSI received by the parking

nodes. Fig. 4(a) shows RSSI values received by Sender #1

and Sender #3, which were respectively deployed 15 or 40



Fig. 5: Readings collected from a magnetic sensor along the

z axis: Two engine-operating scenarios with cars stationary

in a slot.

meters from the parking slot. The difference in RSSI values

received by Sender #1 between occupied and empty states was

approximately 12 dBm. However, deploying the gateway at a

greater distance reduced the difference in signals, as indicated

by the two dotted lines at the bottom of Fig. 4(a). In all

such situations, the RSSI values was scattered across a wider

range. In this situation, differentiating between parking and

non-parking events could only be achieved when the baseline

RSSI value (i.e., the average RSSI value received by a node

in an empty lot) exceeded -80dBm.

To elucidate the impact of interference caused by deploy-

ment factors, we reviewed the distribution of long-term data. In

Section IV-D, we also propose solutions to reduce the impact

of these effects.

C. Interference Caused by Target-vehicle Factors

Variations in the components used in the manufacture of ve-

hicles can have a profound impact on readings from magnetic

sensors and LoRa wireless modules.

1) Magnetic sensor: Changes in the magnetic field caused

by the arrival and departure of cars varies with the design of

the vehicle. Fig. 5(a) and (b) present data along the z axis

collected for two Lexus CT 200H while idling, respectively.

The magnetic field generated by the electric motors caused

fluctuations in the readings along each of the axes when the

vehicles were switched off. We also observed a jump in the

readings when the cars left the parking slot. Nonetheless,

the readings revealed a number of similarities indicating the

need to collect additional data from a variety of vehicles in

order to identify abnormal fluctuations caused by electrical

components.

2) LoRa module: The bodies of cars with a low-slung

design are closer to the parking node, which means that

they are more effective in blocking the signals. Furthermore,

vehicles with a greater proportion of ferrous materials block

signals far more effectively than do vehicles with a greater

content of other materials, such as aluminum. Cars inducing

only a small drop in the RSSI value can confuse the system,

thereby necessitating a sensor selection algorithm to avoid

unreliable sensing readings.

D. Data Accuracy over the Long-term
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Fig. 6: Distribution of two features collected in different

months.
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Fig. 7: Distribution of two features collected from different

parking slots.

Fig. 6 illustrates the distribution of two features collected

in different months. We can see similarities between the

values of Feature A at 2015.12 and 2016.01 and considerable

fluctuations in the other two months. The fluctuations in

Feature B are less pronounced.

Space

Fig. 7 presents the distribution of two features in the

same month but different parking slots, in which similarities

were observed in some feature distributions and differences

were observed in others. Any difference in data distribution

can confuse classifiers and thereby undermine prediction

accuracy. In this situation, increasing the size of training

data set would not necessarily improve classification accuracy.

In the data collected over a period of 13 months, we

observed that a few of the features presented consistent

distributions across space and time. Researchers [31] have

shown that any difference in data distribution can confuse

classifiers and thereby undermine prediction accuracy. In this

situation, increasing the size of training data set would not

necessarily improve classification accuracy. This conclusion

is further validated in Section VI.

Instead of simply measuring changes in magnitude, the

system must learn to discern changes in the patterns associated

with actual transient events. The results obtained in the pilot

phase of data collection were used to guide the subsequent

design of the system, as outlined in the following.

V. METHODOLOGY

We propose three schemes to handle uncertainty in the

collection of data: model selection, sensor selection, and

failure detection. Model selection refers to the identification



of the most appropriate model (i.e., with feature distribution

similar to the testing data). Failure detection is used to monitor

changes in the distribution of incoming data in order to

respond in a timely manner. In the event that a failure is

detected, the system will select another suitable trained model

to keep providing prediction with high accuracy. Otherwise,

the selected model outputs classification results as well as a

corresponding confidence interval. During sensor selection,

the confidence value is taken into consideration to facilitate

optimization of the system for classification accuracy and

minimal power consumption through the switching on/off of

sensors.

A. Model Selection

Despite advances in machine learning technology, there

remain considerable challenges in the application of these

tools to real-world systems. For example, large shifts in

feature distribution can cause even a well-trained model to

fail, regardless of the machine learning technology that is

employed. In this section, we present a model selection scheme

to address this problem.

The model selection problem is defined as follows: Given a

set of trained models or a set of training data with a number

of features, it is necessary to select the model or subset of

features best suited to the classification of incoming testing

data.

We begin with the collection of sensor data from a variety

of parking lots at various times (with ground truth parking

events labeled), for use in training a model for the newly

deployed system. The fact that data collected from different

spots at different times may differ from the data obtained at

new parking lots makes it difficult to select a subset of data

and features capable of maximizing detection accuracy.

The class of testing data is unknown at the time of pre-

diction, which means that we need unsupervised methods to

detect drifts in the predictions; however, it is not always clear

what type of distribution these features obey. We adopted three

tests to reveal shifts in feature distribution: the Kruskal-Wallis

test [11], the Kolmogorov-Smirnov test [10], and Hellinger

distance [8].

Kruskal-Wallis (KW) test : KW one-way analysis of variance

by rank is a non-parametric method for testing the equality

of population medians among groups. It is not based on

any assumptions regarding similarities in population variables

among the groups being compared. This test calculates the

following statistic:

KW = (N − 1)

∑g

i=1
ni(r̄i − r̄)2

∑g

i=1

∑ni

j=1
(rij − r̄)2

(1)

where N is the total number of samples across classes, ni is

the number of samples of class i, rij is the rank of sample i

in class j, r̄i is the average rank of samples in class i, and

r̄ is the average of all ranks. Calculating the KW distance

of feature distributions from the trained model and the testing

data makes it possible to select a trained model with minimal

KW distance.

Kolmogorov-Smirnov (KS) test : The KS test determines

whether there is divergence between two underlying one-

dimensional probability distributions. As with the KW test,

KS makes no assumptions with regard to the distribution of

data. The two-sample KS test calculates the following statistic:

KS = max|ST1 − ST2| (2)

where ST is the CDF of the samples during period T . A

smaller KS means that feature distributions from the trained

model and the testing data are more similar

Hellinger distance : Hellinger distance, also referred to as

Bhattacharyya Distance, is a measure of distributional di-

vergence. In [27], it was concluded that Hellinger distance

offers a good compromise between linearity and resolution

for linear ordination. The Hellinger distance has been used

for clustering and ordination in species abundance data. The

Hellinger distance calculates the following statistic:

H =
1√
2
||
√

PT1 −
√

PT2||2 (3)

where PT is the PDF of the samples during period T , and

|| · ||2 is used to calculate the two-norm.

Score of features: Based on statistical tests used to quantify

the amount of drift in the distributions, we propose six scoring

schemes to enable an explicit estimate of the goodness-of-fit

between the trained models/features and the testing data. Scor-

ing is based on the principle that a model/feature is preferred

if it i) has feature distributions similar to the testing data,

and ii) transient and non-transient events have distributions

sufficiently distinct that machine learning tools can guarantee a

small degree of variance in classification error [25]. Therefore,

we define the following scores as follows:

Score KW
f
stable =

1

KW (P f
T1

, P
f
T2

)
(4)

Score KW
f
comb =

KW (P f

T1|+, P
f

T1|−) +KW (P f

T2|+, P
f

T2|−)

KW (P f
T1

, P
f
T2

)
(5)

where Score KW
f
stable stable is a score defined using the

KW test, indicating that feature f presents similar distribution

across the training data and testing data. Score KW
f
comb

further evaluates feature f by checking the clarity of the

distribution of transient events (i.e., P
f

T1|+) and non-transient

events (i.e., P
f

T1|−).

Similarly, we define the following scores based on KS test

and Hellinger distance:

Score KS
f
stable =

1

KS(Sf
T1

, S
f
T2

)
(6)

Score KS
f
comb =

KS(Sf

T1|+, S
f

T1|−) +KS(Sf

T2|+, S
f

T2|−)

KS(Sf
T1

, S
f
T2

)
(7)
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Fig. 8: (a) Application of ten-fold cross validation illustrating

the accuracy and F1-score when training and testing data

were obtained in the same month; (b) Cross-validation in

one month and testing in other months.
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H(P f
T1
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Score
f
stable indicates that feature f is stable across two periods

of time T1 and T2.

B. Failure Detection

We also need a method by which to determine whether

feature distributions have changed sufficiently to necessitate

the selection of another trained model.

This can be achieved by periodically conducting the KW,

KS, or Hellinger tests and checking whether the corresponding

null hypothesis is rejected. The fact that the sensors perform

sampling at 4Hz or higher means that it is easy obtain

a sufficient number of samples to perform the tests. We

determined that a given feature distribution could be expected

to remain unchanged for weeks at a time and that only 18 hours

are required to collect enough data to conduct statistically

meaningful tests.

C. Sensor Selection

A large number of sensors can facilitate the detection of

transient events; however, the number of sensors must be

minimized to save power, extend the lifespan of sensors, and

reduce management costs.

The proposed sensor selection scheme seeks an equable

trade-off between higher accuracy and lower power consump-

tion. Sensors are turned on and off according to observed

environmental factors with the aim of achieving the following

objective:

Objective: min
I

s
∑

i=1

I(i) ·
[

Pow(i)− C · Prob(i|F )
]

(10)
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Fig. 9: Classification performance using training sets of

various size. We increased the amount of training data to

include data obtained from 2015.04 to 2015.09 and

conducted tests using data from 2016.03.

where I(i) is an indicator that sensor i should be turned on,

Pow(i) is the power consumption of sensor i obtained from

Table I, Prob(i|F ) is a conditional probability representing

the confidence that sensor i will work well under current

environment factor F .

VI. EVALUATION

In this section, we analyze the data collected over a period

of 13 months and evaluate the proposed schemes for model

selection, failure detection, and sensor selection. Note that

some tasks resulted in highly skewed data (i.e., many negative

instances are created when a parking space is not occupied,

but only a few positive instances were created when a car

was moving into or out of the parking space). In these cases,

the accuracy is not a representative indicator of detection

performance. Thus, we conducted a more thorough analysis

of the proposed system using accuracy, precision, recall, and

F1-score, where accuracy = TP+TN
P+N

, precision = TP
TP+FP

,

recall = TP
TP+FN

, and F1-score is the harmonic mean of

them (i.e., 2· precision·recall
precision+recall

), based on the number of positive

samples P , negative samples N , true (false) positive inference

TP (FN ), and true (false) negative inferences TN (FN ).

A. Model Selection

We applied ten-fold cross validation to data obtained in a

given month in order to show that when training data and

testing data are obtained at close to the same time, their feature

distributions are similar and transient events can be detected

accurately, as shown in Fig. 8(a). Our results are comparable to

those reported for state-of-the-art commercial products [5], [2],

with accuracy close to 1 and F1-scores ranging from 0.96 to

1. However, when training data and testing data were obtained

at different times (e.g., separated by one or more months), the

distributions were often significantly different, which greatly

reduced the accuracy of the trained models.

As shown in Fig. 8(b), we selected data obtained in four

months (2015.04, 2015.07, 2015.10, and 2016.03). Half of

the samples from each month were used as training data. We



 0.85

 0.87

 0.89

 0.91

 0.93

 0.95

KS C
om

b

KS Stable

KW
 C

om
b

KW
 Stable

H
. C

om
b

H
. Stable

A
v
g

 F
1

-S
c
o

re

Fig. 10: Average F1-scores obtained using the model

formulated using data collected in 2015.04 to predict

transient events in the traces in 2015.05, 2015.06, and

2015.07. In this set of experiments, the characterization of

the model is based on features with scores ranked in the top

40%.

then used four models to detect transient events in the other

months. In cases where the testing month was the same as

the training month, we used the other half of the samples for

testing. Clearly, any temporal gap between training and testing

undermined detection performance.

One approach to solving this problem would be to use a

larger dataset. Thus, we expanded the training data from 1

month to 6 months (from 2015.04 to 2015.09), and tested the

corresponding models using data from 2016.03, the results of

which are presented in Fig. 9. This shows that the larger data

set does not necessary yield a better F1-score because a change

in the distribution of transient events in one month may be

matched by the distribution of non-transient events in other

months. Thus, a large dataset can actually reduce precision

by introducing a larger number of false positive (i.e., treating

non-transient events as transient events.) Moreover, increasing

the amount of training data also increases the time required

for data acquisition and model training.

As described in Sec. V-A, We addressed these problems by

developing six scoring schemes to identify the models and/or

features best suited to the current testing data. Fig. 10 plots

the average F1-score obtained using the model formulated

using data collected in 2015.04 to predict transient events

in the traces in 2015.05, 2015.06, and 2015.07. In this set

of experiments, we calculated the six scores for each feature

related to the magnetic sensor, light sensor, and LoRa module.

In each scoring scheme, the characterization of the model is

based on top-40% features (features with scores ranked in

the top 40%). The high F1-scores imply that the six scores

can efficiently identify the drifts in distributions. As shown

in Fig. V-A, all of the scoring methods performed similarly,

which implies that KS, KW, and Hellinger distance are all

effective methods by which to address drift in distribution.

Comparing with Fig. 8(b), Fig. 11 further demonstrates

the effectiveness of the proposed scoring schemes in which

features with scores ranked in the top 40% under the

Score KWstable scoring scheme were selected for classifi-

cation. As shown in Fig.. 11, regardless of the training and

testing data, most of the F1-Scores were than 90%. Among

them, the F1-Scores obtained under the model formulated

using data collected in 2015.08 or 2015.12 to predict transient

 0

 0.2

 0.4

 0.6

 0.8

 1

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr

F
1

-S
c
o

re

Test Month

15.4 15.7 15.10 16.03
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Fig. 12: Hellinger distance decreased with an increase in the

amount of data used. With sufficient data, the Hellinger

distance converges, implying that the incoming data

possesses the same distribution.

events in the traces in other months were lower than 90%. This

is due to features with significant drift in the distributions with

scores ranked in the top 40% under the KWstable scoring

scheme.

B. Failure Detection

Fig. 12(a) calculates the Hellinger distance between the fea-

ture distribution obtained from a period of data for the entire

month of April. The period, from the starting time of April

to a specified end time, of used data is increasing from 0 to

400 minutes in April 2015. The Hellinger distance converges

at 220 min, which implies that it takes 220 min to determine

whether incoming data presents the same distribution as data

from April 2015.

Fig. 12(a) shows the time required for the Hellinger distance

to converge (i.e., Hellinger ≤ 0.001) in various months.

Based on the data collected in this study, it appears that

feature distribution can remain unchanged for several weeks.

Fig. 12(b) indicates that it would take 3 ∼ 13 hours to

determine whether incoming data has the same distribution.

Once a change in distribution has been detected, the proposed

model selection method can be used to identify a suitable

model for the classification of incoming data.

C. Sensor Selection

Fig. 13 shows the confidence in the accuracy of clas-

sification events is (true positive and true negative), false
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sensor selection scheme (green line).

positive events, and false negative events. As shown, more

than 9% of incorrectly classified events (i.e., FN and FP )

achieved confidence values equal to or lower than 0.81. These

confidence values make it possible to predict the probability

that a prediction is correct. When confidence is lower than

0.81, additional sensors can be turned on.

Fig. 14 shows the accuracy and power consumption when all

of the sensors are turned on, when all of the sensors except

the magnetic sensor are off, and the results obtained when

using the proposed adaptive sensor selection scheme. When

magnetic sensors are used, the average F1-score is 0.93 and

the power consumption is 5, 114KJ per month. When all of

the sensors are on, the F1-score increases to 0.98 and power

consumption increases by 87 times to 447, 790KJ per month.

The adaptive sensor selection scheme is able to improve the

F1-score to that achieved using only magnetic sensors, while

maintaining power consumption at only 2% of the power

consumed when all of the sensors are turned on.

VII. DISCUSSION

In this study, we sought only to differentiate between

transient and non-transient events; i.e., cars entering parking

spaces cannot be differentiated from cars exiting spaces. One

potential solution would be to use duplicate magnetic sensors

and exploit the spatial correlation between them in order to

determine the direction in which cars are moving; i.e., arriving

or departing. We established a prototype parking node with

two magnetic sensors (i.e., magnetic sensors #1 and #2) on

both sides of the board, separated by 95.5 millimeters. By

Fig. 15: Readings along the x axis collected from two

magnetic sensors located on two sides of the board.

collecting readings through a serial link, we were able to

sample magnetic fields using the two sensors at a sampling

rate of 100 Hz. Fig. 15 shows the magnetic field projected

on the x axis of two magnetic sensors. Magnetic sensor #1 is

closer to the incoming vehicle; therefore, the magnetic field

sensed by magnetic sensor #1 is affected by vehicles first.

Locating peaks and/or dips in the magnetic fields makes it

possible to calculate the delay between two adjacent peaks

or dips in order to infer the direction in which vehicles are

moving. We will continue conducting efforts to incorporate

this design in our final system.

VIII. CONCLUSION

In this study, we collected data from a multi-slot parking

area over a period of 13 months to elucidate the challenges

and limitations of three sensing modules used to determine the

occupancy of parking spaces. A review of interference patterns

and long-term trends in the data led to the development of

three adaptive machine learning schemes to deal with data of

uncertain accuracy: model selection, failure detection and sen-

sor selection. A series of experiments validated the accuracy of

the adaptive schemes in the detection of transient events. The

proposed system is able to improve accuracy by identifying

the most appropriate model and features for training, detecting

changes in the distribution of incoming data, and identifying

the most reliable sensing modality. Our findings highlight the

need for an adaptive machine learning scheme in the design

of parking occupancy detection systems. In future work, we

will continue the data collection process using other sensing

modalities. We will also continue to improve the accuracy

of the proposed system and perform field studies with actual

prototypes in additional parking sites.
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