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Abstract—Various characteristics of mobile applications (apps)
and associated in-app services have been used reveal potentially-
sensitive user information; however, privacy concerns have
prompted third-party apps to rigorously restrict access to data
related to mobile app usage. This paper outlines a novel approach
to the extraction of detailed app usage information based on
analysis of the electromagnetic (EM) signals emitted from mobile
devices when executing app-related tasks. Note that this type of
EM leakage becomes high-complex when multiple apps are used
simultaneously and is subject to interference from geomagnetic
signals generated by device movement. This paper proposes a
deep learning-based multi-label classification system to identify
apps and in-app services based on magnetometer readings. The
proposed MAGTHIEF system uses accelerometer and gyroscope
data to cancel out the offset in geomagnetic signals followed by
an elaborate deep region convolution neural network (DRCNN)
to differentiate among multiple apps and the corresponding in-
app services. Experiments on 50 apps demonstrated the efficacy
of MAGTHIEF in identifying multiple apps and in-app services,
achieving high average macro F1 scores of 0.87 and 0.95,
respectively. MAGTHIEF also achieved time duration accuracy
of 89.5% in recognizing app trajectory in the real-world scene.

Index Terms—electromagnetic signal, side-channel sensing,
mobile application usage

I. INTRODUCTION

Background: Mobile devices have become an increasingly

ubiquitous part in the daily life. Mobile app usage behavior

varies with the personal interests and preferences of the

user, even the in-app service usage patterns are diverse when

using the same app. As shown in Fig. 1, app usage behav-

iors can uniquely reveal the detailed user privacy profiles.

Many third-party app developers/service providers rely on

this information for further applications, such as personalized

services/advertisement recommendation [1], screen addiction

monitor [2] and human mobility prediction [3]. However,

concerns pertaining to the leakage of private information

has prompted the third-part apps to curtail access to mobile

app usage data via system-kernel information (e.g., /proc

filesystem, battery, and internet traffic data) on Android and

iOS devices [4], [5]. Data from cellular network providers

is another potential avenue by which to obtain app usage

information; however, security protocols for in-app services
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Fig. 1. Extraction of potentially-sensitive user information through analysis
of detailed mobile app usage.

are making this increasingly difficult. Governments have also

begun establishing privacy-related regulations limiting third-

party access to data with user labels.

Existing EM-based methods and limitations: A num-

ber of researchers have explored the possibility of using

electromagnetic (EM) signals to infer the launch of specific

apps [6]–[9]. More specifically, these schemes exploited mag-

netometer readings to CPU activity to fingerprint apps being

launched from scratch (via a “cold start”) on the laptops

and smartphones. In real-world scenarios involving mobile

devices, the launching of apps varies. Apps launched in a “hot-

start” manner (reloading data already residing in memory) are

difficult to identify with the same method in [7] (see Sec. II-A),

and systems designed to detect the launching of mobile apps

are unable to track the detailed time durations of active apps

with which the user is closely interacting in the foreground or

identify apps running in the background. Furthermore, much

of the information required to infer personal behavior and

preferences pertains to in-app services usage [10].

Proposed Scheme: This paper proposes a novel system

based on the EM side channel for the characterization of mo-

bile app usage behavior in real time. The proposed MAGTH-

IEF system continuously collects the built-in magnetometer978-1-6654-4108-7/21/$31.00 c©2021 IEEE



(a) Using Oppo Reno4 Pro (b) Using Huawei P20Pro (c) Using iPhone 7Plus

Fig. 2. EM patterns obtained from three smartphones while launching different apps in cold- or hot-start manners.

readings with the aim of inferring when the user is accessing

a specific app based on the corresponding in-app service, as

well as identifying other apps/in-app services running in the

background simultaneously.

Challenges: Development of the MAGTHIEF system im-

posed a number of daunting challenges: (1) The built-in

magnetometer captures EM signals associated with running

apps from the target device as well as fluctuations in the

surrounding geomagnetic field. Thus, our first challenge was

to extract EM signals from noisy magnetometer readings. (2)
Mobile devices are capable of handling with multiple app

tasks in both the foreground and background, which bring the

second challenge to differentiate each running app among the

high-complex EM signals. (3) Many apps provide various in-

app services, which makes it difficult to identify the specific

app running at any given time. Developing an explicit model

by which to identify both the in-app service label as well

as the corresponding app label is the third challenge. (4)
There are at present a staggering number of mobile devices

on the market, and the unique configuration of each may

generate different EM patterns, even when performing the

same app tasks. Thus, our final challenge was to characterize

similarities and differences in the EM patterns emitted from

various mobile devices.

Solutions: The aforementioned challenges were addressed

as follows: (1) We first developed a multi-layer perceptron

(MLP) regression scheme, which uses 3-axis accelerometer

and 3-axis gyroscope data to identify geomagnetic signals

associated with device movement. (2) We developed a deep

learning model to handle the classification of multiple app-

related tasks. We first designed shared convolution layers

for the generation of feature maps, and a region proposal

network (RPN) for the detection of candidate apps. Each

candidate app region is treated as a region of interest (ROI),

and the corresponding ROI feature maps are resized to fit the

app classification structure. (3) We also designed a cascaded

classification model to characterize in-app service and app

type. The ROI feature map of each app is first fed into average

pooling and fully-connected layers for the generation of in-app

service labels. The ROI feature map is also transformed via

a 1 × 1 convolution layer, then fed into subsequent average

pooling and fully-connected layers for app classification. (4)

Preliminary experiments revealed that most mobile devices

using a given operating system (OS) generate similar EM

signals when performing the same tasks. In other words, the

EM signals are affected primarily by the software environ-

ment rather than the internal hardware components. Thus, we

trained two classification models respectively for each of the

mainstream mobile OSs (Android and iOS).

The main contributions of this work are as follows:

• The proposed MAGTHIEF system is able to infer fine-

grained mobile app usage information continuously via

readings from the built-in magnetometer, without the need

for user permissions.

• We developed a Deep Region Convolutional Neural Net-

work (DRCNN) to facilitate the multi-label classification

of multiple running apps running, and identify the corre-

sponding in-app services.

• Extensive experiments demonstrated the efficacy of the

proposed MAGTHIEF system, and it achieves high av-

erage macro F1 scores of 0.87/0.95 when identifying

multiple apps/in-app services respectively. MAGTHIEF

also achieves up to 89.5% time duration accuracy in

recognizing app trajectory in the real-world scene.

II. PRELIMINARY ANALYSIS

Preliminary experiments were conducted to answer three

primary questions: i) Does the manner in which an app is

launched affect the corresponding EM patterns? If so, can

all of the EM patterns be distinguished? ii) What are the

characteristics of the EM signals generated when using specific

apps involving different in-app services? iii) What other factors

impact magnetometer readings? Our answers to the above

questions demonstrate the feasibility of using EM data to infer

details pertaining to the detailed app usage.

Proprietary apps were installed on the devices to enable the

continuous recording the built-in magnetometer at maximum

sampling rates. The EM signals emitted from the device

were calculated using the total magnetic field intensity from

the three-axis magnetometer readings, as follows:magt(t) =√
magx(t)2 +magy(t)2 +magz(t)2 [7].

A. EM signals associated with launching an app

We first recorded EM signals generated when 10 apps were

launched in cold-start (i.e., from the hard disk) and hot-start



Fig. 3. Magnetometer readings and corresponding spectrograms generated while using
various apps and in-app services.

Fig. 4. Magnetometer readings and corresponding spectrograms
generated while using multiple apps simultaneously.

TABLE I
CLASSIFICATION RESULTS OF EM SIGNALS GENERATED DURING

COLD-/HOT-START LAUNCH OF TEN APPS.

kNN LDA SVM RF MLP

Cold 89.7% 93.5% 93.7% 94.9% 95.6%
Hot 11.67% 12.92% 13.37% 15.72% 16.14%

(i.e., from the “Recent Apps” list) manners. As shown in

Fig. 2(a), the EM patterns presented good spatial and temporal

consistency, varying only in the means by which the app was

launched. This can be attributed to the fact that cold starts

require comprehensive app initialization operations, whereas

hot starts involve the reloading of data already residing in

memory.
We applied the feature extraction method proposed in [7]

to 20 EM signal traces obtained from each of the 10 apps

launched in cold-start and hot-start manners. Five classic time-

series classification algorithms: k-nearest neighbors (kNN),

linear discriminant analysis (LDA), support vector machine

(SVM), random forest (RF), and multilayer perceptron (MLP),

were used to assess the EM patterns in terms of distinctiveness.

The results of which are listed in Table I. These initial

results classifying EM signal traces corresponding to hot starts

were unsatisfactory, barely exceeding the accuracy of random

guesses. In conclusion, the EM side channel provides little

information pertaining to the hot-start launch of apps.

B. EM signals across devices
The cold-start launch of an app involves the execution of a

fixed code set, which can be used to facilitate the exploration

of similarities and differences in EM patterns emitted from

different mobile devices. Thus, we recorded the magnetometer

readings generated by another two smartphones while the same

version of the same app was launched, the results of which are

shown in the cold-start part of Fig. 2(a) and Figs. 2(b)-2(c).

We found that devices with the different OSes produced totally

different EM patterns when performing the same app task,

while devices with the same OS produced relatively similar

EM patterns. This prompted us to train two classification

models for each of the mainstream mobile OSs (Android

and iOS). Note that the two models should share the same

architecture, but the parameters are different.

C. EM signals involving in-app services
EM signals also vary when use uses different in-app ser-

vices in the same app. Fig. 3 presents EM patterns and the

corresponding spectrograms generated while using WeChat (a

social/communication app) and Taobao (a shopping app). The

resulting EM patterns showed that the functional differences

between the apps result in different EM patterns. We can also

see in Fig. 4 that the internal EM patterns can be distinguished

according to the in-app services. Taken together, these results

indicate that the EM side channel leaked information pertain-

ing to app usage behavior as well as in-app services.

D. EM signals associate with execution of multiple apps

Multi-window schemes (i.e., split-screens) make it possible

to run multiple mobile apps simultaneously. For example, a

user could be playing a game in one window, while browsing

the web in another window. Note however that the multi-

window mechanism does not alter the app activity lifecycle.

Only the app with which the user has most recently interacted

is active (i.e., RESUMED state) at any given time. This means

that the apps with which the user is not currently interacting

do not generate EM interference signals.

Apps that run continuously in the background (e.g., playing

music/video, downloading files, or navigating) also generate

EM signals, which could potentially interfere with the EM

signals caused by active foreground apps. We recorded the

EM signals when a user was surfing news in the foreground,

while listening music or navigating in the background, and

the corresponding EM patterns and spectrograms are shown in

Fig. 4. In order to understand the characteristic of EM signals

generated by multiple running in-app services, we adopted a

convolutional neural network (CNN) with an attention module

(e.g., STN [11]) to determine areas on the spectrogram with the

highest importance for the in-app service classification task.

The green/red/blue box in the Fig. 4 represents the resulting

important feature region of playing music/navigating/surfing

respectively. To sum up, the EM patterns and spectrograms

generated while multiple apps (especially the active in-app

services) are running simultaneously are similar to the super-

position of EM signals associated with each in-app service,

particularly in the frequency domain. This should make it

possible to break down complex EM signals into separate EM

signals associated with specific apps/in-app services.

E. Other factors affecting magnetometer readings

Magnetometers were originally included in mobile devices

to sense geomagnetic signals for the electronic compass.

Thus, any change in the position and/or orientation of the
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device produces a corresponding change in the magnetometer

readings. Fig. 5 illustrates the total magnetometer readings

obtained while the user was walking. The blue line in Fig. 5

indicates changes in the geomagnetic signal caused by the

movement of the user. The red line indicates the EM signals

generated by the smartphone while performing app tasks. We

discovered that changes in the amplitude of the geomagnetic

signal induced by user movement exceeded the amplitude of

EM signals emitted by the working device. This is a clear

indication that changes in the geomagnetic signal can have a

huge impact on data preprocessing (i.e., normalization). The

dashed blue line in Fig. 5 is the predicted geomagnetic field

signals(see Sec. III-A), which can be used for geomagnetic

fluctuation cancellation.

III. SYSTEM DESIGN

This section presents an overview of the proposed MAGTH-

IEF system comprising three key modules: data collection,

preprocessing, and multi-label classification. Data collection

involves the transfer of the built-in magnetometer and IMU

sensor readings to a server for analysis. Preprocessing involves

the use of 6-axis IMU sensor data to cancel out fluctuations in

the geomagnetic field caused by device movement. Multi-label

classification transforms EM signals into spectrograms and

uses a deep learning algorithm to identify the app(s) running

on the device and associated in-app services. Preprocessing

and multi-label classification are detailed in the following.

A. Cancelling geomagnetic fluctuation

We first sought to resolve offset in the geomagnetic field

signals caused by device movement imposed by the user walk-

ing or travelling in a vehicle. Ten volunteers were pre-assigned

mobile devices to use in their daily lives for a testing period of

one week, during which motion sensor data and magnetometer

readings were recorded continuously. Note that no other apps

were used during the data collection period. We then assessed

six canonical regression algorithms: autoregressive integrated

moving average (ARIMA), linear regression (LR), random

forest regression (RFR), support vector regression (SVR) and

multi-layer perception (MLP), in terms of geomagnetic signal

fitting using 6-axis motion sensor data as the input and the

total magnetic field strength as the output, the Mean Squared

Error results (the smaller value means the better performance)

of which are listed in Table II. Multi-layer perception (MLP)

was the standout among these methods, due primarily to its

ability to capture linear as well as nonlinear relationships (see

the blue dashed line in Fig. 5). We therefore adopted MLP for

0 2 4 6 8 10

4

6

8

10

12 Others

Ca

Ch

ED

LM

EP

PG

Su

WV
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TABLE II
RESULTS OF GEOMAGNETIC SIGNAL FITTING USING CANONICAL

REGRESSION ALGORITHMS.

ARIMA LR RFR SVR MLP

MSE 1.45 1.25 0.82 0.48 0.26

the translation of 6-axis motion sensor data into geomagnetic

field data (see the data preprocessing step in Fig. 7). Note that

the MLP network architecture in this study combined an input

layer with four hidden layers (respectively with 64, 64, 32, 16

neurons) and an output layer.

B. In-app service clustering and relabeling

The number of in-app service labels was impractical for

classification; therefore, we performed time-series cluster anal-

ysis on the EM data using the TSkmeans algorithm [12] with

the aim of formulating general categories pertaining to in-app

functions. The massive quantity of historical data used in this

study made it possible to aggregate the datapoints into nine

categories, as shown in Fig. 6. We redefined a new label for

each cluster, in accordance with the shared characteristics of

each sample in the cluster. The clustering labels were then

used to assign new labels to the original in-app service EM

data to facilitate the training of the multi-task classification

models for apps and in-app services.

C. Multiple apps/in-app services classification algorithm

As described in Sec. II-D, users commonly run multiple

apps simultaneously. Thus, we designed a Deep Region Con-

volutional Neural Network (DRCNN) for the multi-label clas-

sification of multiple apps and in-app services, the architecture

of which is shown in Fig. 7. The first step involves separating

the EM features of each running app from the overall mixed

EM signals using shared convolution layers to generate an

EM feature map and a region proposal network [13] for the

identification of candidate regions. The second step involves

classifying each RoI candidate within a multi-label structure

to output the in-app service and app labels.

1) Shared convolutional layers for feature generation:
We determined that a mixture of EM signals from multiple

apps could be represented as a superposition of individual

apps in the form of a spectrogram. The frequency domain

spectrograms used as classification model inputs in this study

were calculated using the short-time fourier transform (STFT).

The EM spectrograms were fed into shared convolution layers
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to generate feature representations for subsequent task analysis

(e.g., segmentation and multi-label classification). The pro-

posed feature generation module in Fig. 7 applies two layers

of Conv2D filters directly to EM spectrograms, and each layer

is followed by a ReLU activation function.

2) Region proposal network for app detection: Inspired by

the Faster Region-CNN [13], we developed a region proposal

network (RPN) to facilitate the detection of EM features

pertaining to specific apps. Using overall EM feature maps

(from convolutional layers) as input, the RPN outputs a set

of rectangular region proposals, each of which is assigned an

objectness score.

Since the targeting app in the overall spectrogram feature

maps can be at any location with arbitrary sizes, searching

the whole feature maps for regions of all possible locations

and sizes is computationally prohibitive. To generate region

proposals, we slide the anchor boxes over the convolutional

feature map to determine the region locations. Then, a RoI

pooling layer takes the cropped feature map as input and

outputs the unified feature map with n× n size (here n = 3).

Each sliding box is mapped to a lower-dimensional feature,

which is fed into two sibling fully-connected (FC) layers: a

region-regression layer (box-reg) and a region-classification

layer (box-cls). Note that at each sliding-window location,

we simultaneously predict the k possible regions (also called

anchor boxes) containing the app feature, which are centered

at the sliding window and with k pre-fixed sizes. In this work,

we use k = 6 aspect ratios with the same time-axis length.

And the detailed design of our RPN is shown in Fig. 8.

Manually marking each app region in the feature maps after

the shared convolutional layer would be impractical. Thus,

to identify ground truth regions by which to train the RPN,

we used an attention based model - STN network [11] to

automatically learn and crop out the appropriate regions. The

convolutional layer structure used for feature generation in

the STN was the same as that outlined in Sec. III-C1. To

account for the nine in-app service clusters, we trained nine

corresponding STNs (with nine different classifiers), with the

aim of determining whether the overall feature maps contain

all of the in-app services and locating the corresponding

Objectness Score
Box Cls. Loss

k anchor boxes

…
sliding

Conv Feature Map

n n Smoot-L1 Bbox
Reg. Loss (k)

RoI Pooling
Layer

FC Layers

Fig. 8. Detailed structure of region proposal network.

regions for use as ground-truth regions.

After training the RPN, it outputs a set of Region of Interest

(RoI) candidates that achieve objectness scores exceeding a

predefined threshold (e.g., 0.5). The feature map bounding

boxes associated with RoI candidates vary in size, and must

therefore be resized (scale-normalized) via linear interpolation

in an RoI align layer [13]. The RoI candidates and their asso-

ciated feature maps are fed into the multi-label classification

module.

3) Multi-label in-app service/app classification: We de-

signed a two-level classification structure for outputting both

in-app service and app labels. The first level was designed

as two fully-connect (FC) layers to output in-app service

labels using the previously-learned in-app service feature (RoI

candidates) as the input. In the second level, in-app service

features are reintegrated into the feature space by mapping

them to a number of channels using an additional 1 × 1
convolutional layer. The resulting RoI feature maps serve as

inputs for another two FC layers, which outputs the app label.

4) Loss function and training: Using these definitions, we

minimize an objective function following the scheme outlined

in [13]. The loss function used for the overall multi-app

spectrogram is as follows:

L(pi, ti, ai, iai) =
∑

i

λ1Lcls(pi, p
∗
i ) +

∑

i

βp∗iLreg(ti, t
∗
i )

+
∑

i

p∗i (λ2Lcls(ai, a
∗
i ) + λ3Lcls(iai, ia

∗
i ))

Here i is the index of a box in a mini-batch and pi is

the predicted probability of box i containing app features.

Ground-truth label p∗i is 1 if the box contains the app, and



TABLE III
THE 50 MOST POPULAR APPS FOR MOBILE DEVICES.

Category App List (of both Android and iOS)

Music &
Video

YouTube, Netflix, TED, TikTok, Spotify, Pandora,
NetEase Cloud Music

Shopping Amazon, eBay, Taobao, Jingdong
News Yahoo, CNN, BBC, Headlines, Google(Apple) News
Social Net-
working

WhatsApp, Facebook, Instagram, Snapchat, WeChat,
Weibo, LINE, LinkedIn

Games Minecraft, Clash of Clans, Pokemon GO, PUBG
Mobile, Honor of Kings, Hearthstone

Photography FaceApp, PicsArt Photo Editor, Meitu
Travel&Navi Airbnb, CTrip, Uber, Google Maps, AutoN-

avi(AMap)
Productivity Gmail, Yahoo Mail, Microsoft Word, Microsoft Ex-

cel, Adobe Acrobat Reader, Evernote
Others Microsoft Edge, Google Chrome, Alipay, Paypal

is 0 if not. Similarity, ai and iai are the predicted result

of app type and in-app service type, while a∗i and ia∗i are

the corresponding ground-truth labels. The classification loss

function Lcls utilizes cross entropy loss over classes. λ1, λ2,

and λ3 are weights for each individual classification cost

functions, and we set λ1 as 1, λ2 and λ3 as 0.5 in this

study. Note that ti is a vector representing the 4 parameterized

coordinates of the predicted bounding box, and t∗i is that

of the ground-truth box containing app features. To derive

the regression loss, we use Lreg(ti, t
∗
i ) = SmoothL1(ti, t

∗
i )

defined in [14], and we adopt the parameterizations of the 4

coordinates as designed in [15]. The term p∗iLreg indicates

the regression loss is activated only for boxes containing apps

(p∗i = 1) and is disabled otherwise (p∗i = 0). To account for

varying sizes of boxes (RoIs), we learned a set of k bounding-

box regressors, each of which was responsible for one aspect

ratio. Note that the k regressors did not share weights. The

box-reg are also normalized by a balancing parameter β. In

our implementation, we set the β = 0.01 to weaken the

importance of regression because our tasks are to obtain the

app/in-app service labels instead of their exact locations on

the EM spectrogram.

Training of the proposed DRCNN was implemented in two

stages: pre-training and overall training. We began by pre-

training the convolutional layers in the STNs to automate

the locating the possible regions in terms of in-app service.

We then fixed the parameters of the pretrained convolutional

layers, and combined the following RPN, RPI align layer

and FC layers to perform the overall training. To ensure

compatibility with as many mobile devices as possible, we

established two classification models – one for each of the

two OS platforms (Android and iOS). We divided the training

dataset in accordance with the OS, and trained two multi-

label classification models using the same network structure

and different weight parameters.

IV. EVALUATION

A. Experiment Setup

Dataset Collection: We recruited 12 individuals (5 females)

to use mobile apps in our experiments. Each participant was

TABLE IV
THE 12 SMARTPHONES USED IN THE EXPERIMENTS.

Category Device Name (ID)

Android
phones

Huawei Nexus 6P (1), Huawei P20Pro (2), Huawei
Nova2 (3), Oppo Reno 4Pro (4), Samsung Galaxy
S7 (5), OnePlus 7Pro (6), Xiaomi Redmi K20Pro
(7), Xiaomi Mi8 (8)

iPhones iPhone 11 (9), iPhone X (10), iPhone 8Plus (11),
iPhone 7Plus (12)

tasked with arbitrarily using apps in the Table III1, on the pre-

assigned devices (see Table IV) during a period of a week. On

the participant’s smartphones, we installed an app tasked with

continuously collecting the built-in magnetometer, 6-axis IMU

data in the background at the maximum sampling rate provided

by the device. While using each app, the users were required to

use all of the in-app services and recorded the corresponding

labels. The same clustering analysis in Sec. III-B was then

used to assign new in-app service labels in accordance with

the name of the nearest cluster.

Metric: The macro-averaged F1 score is utilized to evaluate

the performance of the multi-label classifications on the apps

and in-app services. For the app multi-label classification, we

assume that pi and ri are the precision and recall of the

ith app, the F1 score can be computed as: F1i = 2×pi×ri
pi+ri

.

And the macro F1 score can be computed as: F1macro =
1
|L|

∑|L|
i=1 F1i, where |L| is the number of app classes. The

same metric is utilized on the in-app service classification.

Implementation: We transferred the EM time-series data

into uniform spectrograms (with 120 × 120 pixels) using the

STFT and a image resize method. All models were initialized

with learning rate of 0.001, which was further reduced after

5000 iterations. A momentum of 0.9 and weight decay of

0.0005 was used. Our model implementations were based

on the tensorflow version of faster RCNN and STN with

modifications, and all experiments were performed on one

NVIDIA Tesla V100 GPU card.

B. Methodologies Evaluation

This sub-section examines the effectiveness of our proposed

the DRCNN model on the multi-task classification of apps and

in-app services.

1) Time interval vs. classification performance: MAGTH-

IEF was tasked with the identification of both the multi-

ple simultaneously running apps (as well as in-app service

information) from the built-in magnetometer readings over

fixed time intervals of various lengths. Assigning a short

time interval would obtain fine-grained app usage information;

however, this would greatly hinder classification performance,

due to a lack of time series information for feature extrac-

tion. After the removal of time-dependent fluctuations, we

divided the magnetometer readings into segments matching

the assigned time intervals to generate spectrogram images

(60× 60× 1 pixels), and retrained the whole DRCNN models

for each sampling rates and evaluated their performances. As

shown in Fig. 9, setting a time interval of greater than 3

1We selected the 50 most popular apps on the Google Play and Apple Store



Fig. 9. Length of time interval vs. multi-label in-app services/apps classifi-
cation performance.

(a) In-app services classification. (b) Apps classification.
Fig. 10. Performance of the multi-label apps/in-app services classification
with the proposed DRCNN. Note that we partly list the results of apps (in
social networking category) due to the space limitation.

seconds improved the macro F1 macro score of multi-label

in-app services classification to roughly 0.958 with negligible

standard deviation, and 5 seconds for apps classification (with

0.876 macro F1 score). In the following experiment, we set

the time interval as 5 seconds for both the in-app service and

app classification.

2) Multi-label in-app services classification: Fig. 10(a)

showed average multi-label in-app services classification re-

sults in the terms of F1 score. As shown in the figure, our

DRCNN model achieves relatively high F1 score on recog-

nizing the multiple running in-app services. Both Android

and iOS classification models have the worst performance on

recognizing “Playing Music” among the nine in-app services.

This is because plying music consumed little CPU recourses

and involved infrequent user interaction, the corresponding

EM spetrogram features were relatively weak.

3) Multi-label apps classification: Fig. 10(b) partly showed

average multi-label apps (in social networking category) clas-

sification results in the terms of F1 score. The experiment

results verified that the app’s label can also be identified with

high F1 scores, thanks to the feature transfer mechanism.

Considering the thousands of app types in the market, we also

sought to determine whether the increasing number of training

apps would decrease the multi-label apps classification perfor-

mance. As shown in Fig. 11, the identification performance of

MAGTHIEF did decrease with the the number of training apps

increased, but it also began relatively slowing decreasing or

relatively stabilizing when the number exceeded 25, regardless

of applying to Android or iOS phones.

4) Performance on unseen smartphones: We evaluated the

classification performance of the proposed scheme when ap-

plied to smartphones for which the model had not previously

been trained. For each Android phones in the Table IV as a

testing device, we retrained the DRCNN model from scratch

with the training dataset of other Android phones except itself,

and evaluated the multi-label classification performance. The

same process was executed for each iPhone. As shown in

Fig. 12, the classifiers performed well when facing unseen

Fig. 11. Multi-label apps classification performance decreases slowly with
the increase of number of training apps.

Fig. 12. Performance of our MAGTHIEF on different smartphones.

smartphones with the same operating system.

5) Comparison with baseline methods: Given the multi-

label in app services/apps classification tasks, we transform

them into many one-versus-the-rest binary classification sub-

tasks. We firstly utilized the spectrogram image features

(SIF [16]) and the machine learning algorithms (e.g., SVM

and RF) as the traditional baseline methods to handle with the

multi-label classification tasks. Then, we also trained many

binary CNNs/STNs as the deep learning baseline methods

to compare our designed networks. Fig. 13 presents the

average F1 macro scores of all multi-label in-app services/apps

classification methods assessed in this study on the An-

droid and iOS devices: Multi-SVM (0.55/0.47), Multi-SVM

(0.67/0.51), Multi-CNN (0.83/0.72), Multi-STN (0.96/0.87),

and our designed DRCNN(0.95/0.87). The results showed the

DRCNN was an outstanding classifier and could approximate

the classification performance of the Multi-STN, which was

used to provide ground truth regions. It is worth mentioning

that the DRCNN has a more concise and single network

structure than the many binary classifiers.

C. Robustness against geomagnetic noise

App classification performance with and without the pro-

posed geomagnetic offset signal cancellation scheme (pre-

processing step in Fig. 7) was evaluated in an experiment

involving volunteers using mobile devices in six real-world

scenarios (lying/sitting/walking in the lab and standing in

the metro/bus/elevator). As shown in Fig. 14, preprocessing

greatly improved the stability and accuracy of both the in-app

service and app classification, particularly when the smart-

phones were moved frequently.

D. Influence of battery levels

The EM signals emitted by smartphones could potentially

be altered by some factors, such as the battery level. We tested

two smartphones and results are shown in Fig. 15, operating

the devices in power saving mode (� 20% battery) had a

relatively profound influence on the performance of the multi-

label classification: in-app services (−0.072) and app types



Fig. 13. Performances between different multi-
label classification models.

Fig. 14. Performances of the DRCNN w/ and w/o
cancellation of geomagnetic noise.

Fig. 15. Influence of battery on the performance
of our MAGTHIEF.

Fig. 16. Influence of sampling rate on the
classification performance.

Fig. 17. Power consumption of
the second countermeasure.

(−0.064). This can probably be attributed to the power-saving

conditions, in which the CPU operates at a lower frequency,

videos are not preloaded, games are in the low frame rate

mode, and etc..

E. Overall comparison with other EM-based app classifica-
tion method

In the last, we compared the proposed MAGTHIEF perfor-

mance of real-time uncovering app usage information from

the built-in magnetometer readings with the related EM-based

app classification method MagAttack [7], [8]. Time Duration

Accuracy (TDA) is adopted as the evaluation metric which

evaluates the total time durations of each app that are correctly

labeled, and TDA is calculated as: TDA = T (A∩Â)
T (A) , where

T (A) denotes the time duration of the object app usage O,

and T (A∩ Â) is the time duration in which the app labels are

correctly identified.

We let a participant to use the Huawei P20Pro at will, and

recorded the app’s duration time as well as the builtin magne-

tometer reading. The EM data analysis models in MagAttack

and MAGTHIEF were utilized to identify the user’s app usage

information. We calculated the TDA accuracy with the app

classification results. and found our MAGTHIEF achieved a

TDA of 89.5%, and MagAttack2 achieved 17.9%. The overall

performance indicates that our MAGTHIEF indeed has the

ability to uncover the detailed app usage information in each

time duration in the actual scene.

V. DISCUSSION

Researchers have developed a number of methods to prevent

the leakage of information via EM disturbance, such as phys-

ical shielding and explicit user permissions pertaining to the

magnetometer sensor [8]. However, physical shielding requires

modifying the hardware of existing smartphones, and imposing

permissions on the magnetometer would be implausible, due

to the fact that nearly all apps must sense the orientation of

2Note that the MagAttack assumes the user uses the app after being
launched until the next app is launched.

the device and adjust the user interface accordingly. In this

study, we developed two countermeasures against our system.

A. Limiting sampling rates

We first sought to verify whether the sampling frequency

of the built-in magnetometer would affect the classification

accuracy of the MAGTHIEF system. This was achieved via

downsampling and upsampling in order to alter the sampling

rates in the dataset. We then retrained the MAGTHIEF models

and evaluated the results. Fig. 16 lists app classification

accuracy when using data obtained over a range of sampling

rates. When the sampling rate was limited to 20Hz, the macro

F1 score of the system was 0.157, indicating that MAGTHIEF

was unable to obtain valid information related to app usage.

B. Adding EM noise through control of the CPU

We also verify whether the CPU could be manipulated to

confuse the sensor readings. We developed a custom interfer-

ence app to run continuously in the background instructing

the CPU to run a loop code or execute “sleep” instructions

at irregular intervals [17]. When setting the run-sleep ratio

as 80% in the interference app, it can result in a 0.417/0.463

decrease in macro F1-score in classifying in app services/apps

respectively. We also recorded the power consumption of

the MAGTHIEF app and the customized interference app. As

shown in Fig. 17, running the MAGTHIEF app continuously

for half an hour increased power consumption by only 6%,

compared to standby with the screen on. Running the inter-

ference app for only half an hour drained the battery by 37%,

which is no doubt sufficient to affect the user experience.

VI. RELATED WORK

A. Electromagnetic side channel:

In previous studies, the EM side channel was exploited to

enable attacks on some mobile devices. In [18], the EM signals

emitted by laptops were detected using customized antennas

and a software-defined radio receiver for the extraction of RSA

and ElGamal keys. [19] proposed a similar attack strategy was

demonstrated at lower frequencies. In [17], EM side-channel

signals were used to create a novel near-field communication

system between mobile devices. In [20], electric appliances

were characterized based on the EM radiation signals they

emitted. In [7]–[9], [21], researchers exploited the reaction of

magnetometers to EM activity to infer activities corresponding

to the launching of apps or opening of browser websites.

[22] also utilized EM signals to implement user fingerprinting.



In the current work, we demonstrate the feasibility of using

magnetometer readings to infer the complete mobile app usage

behavior, such as the multiple simultaneously running apps and

the corresponding in-app service in each app.

B. Other side channels:

Side channels other than EM signals can be used to infer

user behavior in the usage of mobile devices: (i) Several

researchers have shown that power consumption traces (col-

lected in the form of sysfs files [23]) are highly correlated

with CPU activity patterns, and could therefore be used to

infer the opening of apps [24]. However, the sampling rate for

battery monitoring is generally low (≤ 5Hz). (ii) Researchers

have also employed data-usage statistics (i.e., tcp packages,

memory footprint, browser cache) to infer user behavior [25]–

[27]. Note however that accessing data-usage statistics on

mobile devices via the /proc file system can only be achieved

on rooted devices. (iii) Researchers have demonstrated the

efficacy of using built-in motion sensors to elucidate the

motion of users [28]. Researchers have also utilized motion

sensor data to infer when the user is tapping and gesturing

during data input [29]. In contrast, the EM signals emitted by

mobile devices provide valuable information pertaining to app

usage and user behavior.

VII. CONCLUSIONS

This paper outlines a novel monitoring system to enable the

theft of sensitive app usage information without the need for

user permissions. The proposed MAGTHIEF system employs

an elaborate deep region convolutional neural network for the

identification of multiple apps running simultaneously and

the corresponding in-app service in each app. In extensive

experiments on 12 mainstream smartphones and 50 popular

apps, a prototype of the MAGTHIEF system can achieve

high average macro F1 scores of 0.87/0.95 when identifying

multiple apps/in-app services respectively.
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