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Abstract—This study reveals that on-board hardware modules
leak electromagnetic (EM) emissions whenever audio or camera
data is accessed, and proposes MAGDEFENDER scheme that
explores the possibility of using the magnetometer built into
mobile devices to detect eavesdropping instances by malicious
apps and even the unscrupulous phone vendors. However, the
target EM signals generated by accessing multimedia data is
weak and tends to be buried beneath other noisy EM signals from
apps running in the foreground. It is also subject to the external
interference from geomagnetic signals generated by the device
movement. To cope with the challenges, we adopt a generative ad-
versarial networks (GAN) based model to facilitate the extraction
of target EM signals indicating the occurrence of eavesdropping
from the overall magnetometer readings. We also develop a
neural network-based classifier with triplet loss embedding to
identify the EM signals from the camera and/or microphones.
Empirical results demonstrate the efficacy of MAGDEFENDER in
recognizing instances of eavesdropping on cameras/microphones
data, with average accuracy of 97.3% when applied to the trained
devices, and average 91.5% on unseen mobile devices.

Index Terms—electromagnetic side-channel, eavesdropping de-
tect, mobile security

I. INTRODUCTION

The availability of high-fidelity multimedia sensors (i.e.,
cameras and microphones) and ubiquitous internet connectiv-
ity have prompted the development of numerous mobile appli-
cations (apps) and services; however, many malicious apps are
able to use sensors in ways that violate user expectations and
privacy. The New York Times has reported on apps using code
from a company called Alphonso to listen for audio signals
indicative of user behavior and preferences [1].

Existing solutions: Current mainstream operating systems
(OSes), e.g.Android and iOS, are equipped with mechanisms
that control and monitor the access to hardware sensors. How-
ever, these restrictions or indicators may have no effect at all
on actions performed by these manufacturers themselves. Note
however that these software-based solutions cannot identify
malicious eavesdropping instances from the OS itself. Fur-
thermore, these solutions can be easily bypassed by attackers
with some hacking tricks even on unrooted phones, e.g.,
transplantation attacks [2].

EM side-channel: Side-channel sensing technologies pro-
vide another opportunity for anti-eavesdropping. Several pa-
pers have explored the use of magnetometers to detect EM
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activity indicative of specific apps or webpages [3]; however,
these schemes require the collection of a app-/webpage-labeled
EM training dataset, which is impractical in actual usage
scenarios. Furthermore, the existing works can only identify
the most active apps operating in the foreground; i.e., they
disregard foreground apps running in parallel as well as those
running in the background.

Proposed scheme: Our proposed MAGDEFENDER identi-
fies eavesdropping instances by analyzing EM signals gener-
ated during the acquisition of camera/mic data, as detected by
the magnetometer built into the mobile device. This scheme
can be implemented on any commercial off-the-shelf mobile
device without the need for hardware/system kernel software
modification, root/jailbreak, or additional system permissions.

Challenges: Development of the MAGDEFENDER system
imposed a number of daunting challenges: (1) EM signals of
interest that are associated with accessing to camera/mic data
must be extracted from noisy magnetometer readings, which
also contain noisy EM signals from legitimate running apps
as well as magnetic field signals caused by device motion and
other sources of interference. (2) A highly robust classification
model is required to characterize EM signals, particularly
when confronted by widely divergent EM emission patterns
resulting from variations in hardware configuration, e.g., cam-
era/mic hardware modules.

Our solution: (1) Preliminary experiments were conducted
to analyze the characteristics of EM signals generated while
camera/mic data is accessed (target EM signal) as well as
ambient magnetic field signals (interference). The target EM
signals appeared stable and regular, compared to the external
geomagnetic signals caused by device motion and the internal
EM signals generated during the execution of other apps. We
used mean-median filtering to remove signals with excessive
fluctuations and developed a generative adversarial network
(GAN) based model to separate target EM signals from noisy
EM signals based on spectrogram analysis. (2) We developed
a neural network-based classifier with triplet loss embedding
to maximize the differences between EM signals from the
camera and mic, while minimizing the differences between
EM signals from different sensors modules of the same type.
The resulting classification model is able to identify instances
of eavesdropping, despite the diversity of mobile devices.

We implemented the MAGDEFENDER prototype on both
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Fig. 1. (a) Workflow of camera apps when using the Android Camera APIs; (b) Process involved in monitoring app to detect instances of using the
CameraManager to call camera clients; (c) Model of transplantation attack involving stealthy use of camera device by avoiding Android APIs [2]

Android and iOS devices, and conducted extensive exper-
iments to demonstrate the effectiveness and generalization
of our proposed MAGDEFENDER in detecting eavesdropping
events. In the last, we also explore the limitations and outline
a number of countermeasures to make our system failed.

The main contributions of this work are as follows:
• We developed a third-party app capable of monitoring the

working status of the mics and cameras in mobile devices
through analyzing magnetometer readings without using
OS-related media APIs.

• We conducted a pilot study to verify that the media
sensors and corresponding hardware modules in mobile
devices generate unique and consistent EM signals de-
tectable using the built-in magnetometer.

• We designed a general denoising scheme combined with a
mean-media filtering method and a DNcGAN (DeNoising
conditional Generative Adversarial Network) to extract
the target EM signals (generated when accessing cam-
era/mic data) from overall magnetometer readings. A neu-
ral network-based classifier with triplet loss embedding
was also proposed to identify the eavesdropping types.

II. BACKGROUND AND VULNERABILITY ANALYSIS

In the Android, multimedia programming is based on the
client/server architecture. The client process refers to any app
using the Android Camera/Audio Service, whereas the server
refers to Mediaserver. The workflow of an app accessing the
camera data is presented in Fig. 1(a). Common attacks that
involve in accessing camera/mic data on an Android device
call multimedia-related APIs provided by an Android SDK.
However, this type of spy-on-user attack is not stealthy, as it
is unable to evade monitoring apps (Fig. 1(b)). Sophisticated
attackers are able to take photos and record audio/video
without calling Android APIs. These stealthy methods are
referred to as transplantation attacks [2].

Repackaging the apps (e.g., QRCode Scanner or Speech-
to-Text) that uses CAMERA/RECORD_AUDIO permissions
is straightforward for bypassing the permission restrictions.
Moreover, the Checkmarx Security Research Team also found

multiple concerning vulnerabilities stemming from permission
bypass issues [4], which can also be utilized by the trans-
plantation attack model. Fig. 1(c) illustrates the process after
the malicious apps has been installed on the victim’s mobile
device. Basically, transplantation attacks involve loading the
Mediaserver process into the address space of the malicious
app, thereby allowing the Java code in the Application layer
to pass through the Framework layer and access the lib-
cameraservice transplanted.so in the Native Core Libraries
layer. Functions in the CameraHardwareInterface then call
.so libraries in the HAL layer to talk with the Camera Driver
in the Linux Kernel. Java Native Interface (JNI) programming
is utilized as a bridge to connect Java code in the Applica-
tion layer with transplanted .so libraries. The native code is
compiled as an .so file (bridge.so in Fig. 1(c)).

Unlike normal multimedia-related apps, this type of ma-
licious app jumps over the Android API Framework and
eliminates the Binder IPC between Mediaserver processes
by deleting the libcameraclient.so library and Camera Ser-
vice in the libcameraservice.so. Under these conditions, the
API/Hook-based monitoring solutions mentioned above are
unable to detect eavesdropping behavior that involves in
accessing camera/mic data.

III. ATTACK AND DEFENSE MODELS

Threat Model: This study addresses two stealthy attack
scenarios involving (1) unscrupulous mobile phone vendors
access the camera/microphones in the background by interact-
ing with kernel drivers directly; and (2) sophisticated attackers
inject buggy code (or use malicious third-party libraries) for
eavesdropping without using OS multimedia-related APIs.

We divide these sophisticated attackers’ capabilities into
three levels. The first level attackers can only use the APIs
in the operating system. This type of attackers can run native
code as well but without root privileges. The second level
attackers can run native code with root privileges in the user
space, however cannot run code with kernel privileges or
secretly modify the system images. More specifically, in this
case, we assume that the attacker cannot leverage the kernel
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(a) iPhone 7Plus.
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(b) Huawei P20Pro.
Fig. 2. Magnetometer readings and corresponding spectrograms
when recording video and/or audio on different mobile phones
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Fig. 3. Magnetometer readings and corresponding spectrograms obtained while executing
various audio-/camera-related tasks as a proxy for accessing microphone/camera data.

vulnerabilities to inject code and assume that the kernel is
configured to prevent a root user from easily modifying the
running kernel memory. The third level attackers can leverage
the vulnerabilities of the kernel to compromise it and hence
can run code with kernel privileges. Moreover, he can also
rewrite the kernel images, have physical access to the device
and can manipulate the hardware directly. In the real attack
scenario, the vast majority of attackers can only reach up to
the second level of attacking capability.

Defense Model: The fact that the above mentioned attack
strategies can easily evade the software-based monitoring
methods. In this study, we developed a novel defense model,
which uses the on-board magnetometer in mobile devices to
detect electromagnetic (EM) emissions generated whenever
the built-in microphone and/or cameras are being used, even
surreptitiously. The attackers may know the means of auditing
multimedia sensor access via EM side channel and could
invalidate it by tampering with the magnetometer readings.
However, only the Level-3 attackers could achieve tampering
with the magnetometer readings by modifying the sensor
driver. Once the attacker has extremely high hardware access
and control over the victim’s device, then all auditing methods
will be equally invalidated. Therefore, here we assume that the
built-in magnetometer readings are trustworthy and can not be
tampered with attackers in the real attack scene.

IV. PRELIMINARY ANALYSIS

Preliminary experiments were conducted to answer three
fundamental questions: (i) When apps access camera/mic data,
does the mobile device generate EM emission signals that
could be captured using the built-in magnetometer? (ii) If so,
what are the characteristics of these EM signals generated by
apps that perform eavesdropping via the built-in camera/mic?

(iii) What other factors affect magnetometer readings, and
what are the characteristics of noisy signals? Our answers
to these questions demonstrated the potential of using EM
side-channel sensing to detect instances of eavesdropping via
the built-in camera/mic and helped to elucidate the challenges
involved in developing this technology.

Proprietary apps were installed on two representative smart-
phones to enable the continuous recording the built-in magne-
tometer at maximum sampling rates: iPhone 7 Plus (100Hz)
and Huawei P20Pro (200Hz). The magnetometer readings in
this paper mean the raw sensor data (e.g., 12/16 bit), and the
EM signals emitted from the device were calculated using the
total magnetic field intensity from the three-axis readings as
follows: magt(t) =

√
magx(t)2 +magy(t)2 +magz(t)2.

A. EM Signals When Accessing Multimedia Data
To minimize interference during the first experiment, the

phones were placed on a table (static) and no other active
app tasks were executed. Fig. 2 presents readings from the
built-in magnetometer in the time and frequency domains. The
magnetometer patterns generated while the device was record-
ing video and/or audio were regular and easily differentiated
from those obtained while the device was “Doing Nothing”.
The results of this first preliminary test demonstrated that the
built-in magnetometer is well-suited to capturing EM emission
signals generated by mobile devices while accessing cam-
era/mic data. Meanwhile, a cursory comparison of Figs. 2(a)
and 2(b) revealed that different devices generated different
EM signals, when performing the same task. This can no
doubt be attributed to the fact that manufacturers differ in
their selection of camera/mic modules and codec chips, and
corresponding codes (e.g., hardware drivers, interface libraries)
in the HAL layer and Linux Kernel layer. Widely divergent
EM emission patterns resulting from variations in multimedia
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hardware will enhance difficulty to identify eavesdropping
behaviors on untrained devices, we will discuss in Sec. V-C3.

B. EM Signals When Executing Eavesdropping Apps

As mentioned in Sec. III, the characteristics of EM signals
differ according to which eavesdropping app tasks are running
in the background. Thus, the second experiment was meant
to characterize the EM signals generated by the smartphone,
while executing a variety of app tasks that involve accessing
camera/mic data.

1) Executing Audio-related App Tasks: We first pro-
grammed the devices to access audio data under a variety of
parameter settings (sampleRateInHz, channelConfig,
audioFormat) and collected their EM signals. We also
examined the EM signals generated while executing apps that
use audio data in conjunction with other functions, such as
speech recognition and apps that transmit audio data over the
Internet. As shown in Figs. 3(a) and (b), the magnetometer
readings revealed the following important points: (i) EM
signals generated by the device while recording audio data did
not vary obviously, despite changes in parameter settings; (ii)
EM signals generated by the device while performing complex
audio-related tasks seem have more interference noises which
superimposed over the target EM signals, which conceal the
characteristic EM signals generated by accessing audio signal
to a certain extent.

2) Executing Camera-related App Tasks: Our analysis in-
cluded a comparison of EM signals generated while recording
video using the rear or front camera modules (see Fig. 3(c)), as
well as those generated while executing apps that involved the
recording of video data in conjunction with other functions,
such as face recognition (see Fig. 3(d)). We found that the
EM signals differed according to which data stream was being
accessed (front or rear camera), and EM signals generated
while taking photos are characterized by sequential changes
(Fig. 3(e)) which concealed the target EM signals (accessing
camera stream data) in the form of noise. Also, we discovered
that the EM signals generated during video data processing
operations are similarly superimposed over the target EM
signals, which means that it should be possible to identify
eavesdropping instances based on target EM signals emitted
whenever camera data is accessed. In this study, we treat all
EM signals generated by other operations (e.g., data processing
and transmission) that are not related to multimedia data

acquisition as noise, and systematically discuss this kind of
interference noises in Sec. IV-C1.

C. Other Factors Affecting Magnetometer Readings

1) Internal EM Interference Signal: The execution of other
operations in eavesdropping apps and other app tasks/services
also produce EM interference signals; therefore, we sought to
characterize the EM signals generated while simultaneously
running eavesdropping operations in the background and other
legitimate apps in the foreground. The magnetometer readings
in Fig. 4(a) revealed that when surfing news/posts on Twitter,
the device generated non-negligible interference signals super-
imposed over the target EM signals generated by accessing
audio data in the background.

In-depth analysis allowed us to divide the noisy EM signals
into two parts. One part referred to as a “fluctuation” signal
(red line in Fig. 4(b)) presents coarse-grained changes in the
amplitude of the signal over a medium-to-long time span. This
type of noise is caused mainly by changes of intensity of tasks
executed by the CPU. The other type of is referred to as glitch
noise, which is caused by the CPU executing fine-grained
operations associated with app tasks. As indicated by the green
line in Fig. 4(c), “glitch” noise becomes apparent after the
removal of fluctuation signals (see Sec. V-C1) and appears
far more random than the target EM signal (orange line in
Fig. 4(c)). The corresponding spectrograms (Fig. 4(d)) also
revealed that the “glitch” noisy signal submerged the spectral
characteristics of the target EM signals.

2) External Interference Signals: Any movement and loca-
tion changes of device the user makes while using a mobile
device could alter the position and/or orientation of the device,
resulting in changes in the geomagnetic signals. Fig. 5 re-
spectively present signals generated while the user was sitting
and walking around. Clearly, motion-induced variations in
geomagnetic signals also presented as “fluctuation” signals,
with a larger amplitude and lower frequency than the EM
signals generated from the mobile devices. The variations in
geomagnetic flux cannot be disregarded in the EM analysis.

Other electrical devices (e.g., household appliances) also
leak EM emissions at levels that cannot be disregarded out of
hand. We conducted a series of experiments to determine the
actual attenuation of EM emission signals as a function of dis-
tance by collecting EM signals emitted from various electrical
devices using the magnetometer built into the Huawei P20Pro
at various distances from the appliances. We then drew up a
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diagram plotting the attenuation of EM intensity with distance
(see Fig. 6). When the mobile device was ≥ 25cm from large
household appliances (washing machine and microwave oven),
the built-in magnetometer was unable to detect the EM signals.
In the case of the appliances with low EM emission (table lamp
and TV), 5cm was sufficient to eliminate any interference.

V. MAGDEFENDER DESIGN

A. Denoising task

Our preliminary experiments in the above section revealed
three components in the overall magnetometer readings: i)
medium-to-long fluctuation signals (caused by geomagnetic
interference and other running apps’ task intensity), ii) fine-
grained glitch signals (caused by the detailed operations in
other running apps), and iii) target EM signals (caused by
accessing camera/mic data). Here, we introduce the denoising
method developed for the extraction of our target EM signals
associated with the acquisition of camera/mic data from the
overall built-in magnetometer readings.

B. Data Collection

We begin with the assembly of a dataset comprising magne-
tometer readings recorded from mobile devices. Specifically,
the dataset comprised exemplar (clean) signals and instance
(noisy) signals, which were subsequently paired for training.

Exemplar Data. We first collected exemplar signals gen-
erated when accessing camera/mic data. With the mobile
device stationary on a table and all other app tasks disabled,
we recorded magnetometer readings in the background. Note
that the readings obtained without multimedia-related tasks
were labeled “none”. We then ran a proprietary app that
requested access to the audio data stream and labeled the
corresponding data “audio”. Using the same setup, we also
requested access to video data streams without preview (w/
or w/o audio) respectively from the rear and front camera
modules and labeled the corresponding data using the term
“camera”/“audio-camera”. Note that we did not differentiate
between the front and rear cameras because victims are
primarily concerned about the fact of eavesdropping rather
than which camera is used.

Instance Data. The collection and labeling of noisy mag-
netometer readings involved turning off permissions to access
the camera and microphone (for all apps on the mobile
devices) and allowing users to operate the mobile devices

at will (without transplantation attacks), the corresponding
magnetometer readings were labeled using the term “none”.
Similarly, we ran our proprietary apps with various media-
related types of tasks in the background, while respectively
running the above programs, which were labeled using the
terms “audio”, “camera”, and “camera-audio” respectively.
We also let our apps take pictures in the background, and
labeled the signals with “camera”.

C. System Design

Our objective in this work was to determine from built-
in magnetometer readings whether an app task/service was
accessing camera/mic data. We also sought to identify which
multimedia sensor was being accessed (e.g., mic and/or cam-
era). Fig. 7 presents an overview architecture of the proposed
MAGDEFENDER. In the denoising stage, the fluctuation sig-
nals and glitch noisy signals are removed respectively (Step
1⃝ and 2⃝ in Fig. 7) to facilitate the extraction of the target
EM signals, which are then fed into a classification model to
identify instances of eavesdropping (Step 3⃝ in Fig. 7).

1) Fluctuation Removal: As shown in Fig. 4(b) and 5,
unpredictable changes in the characteristics of signal fluctu-
ations over time cannot be tracked using conventional fitting
methods (e.g., polynomial fitting (PF) and iterative restricted
least square (IRLS)) . The limited sampling rates of the built-in
magnetometers (100 ∼ 200Hz) can lead to aliasing in the low-
frequency region of target EM signals (i.e., undersampling).
Utilizing filtering methods in the frequency-domain (e.g.,
wavelet transform) to filter out the fluctuation signals, will also
tend to erase the spectral characteristics of target EM signals.

Thus, we employed Mean-Median Filtering (MMF) to elim-
inate the effect of fluctuations over time. Mathematically, this
process can be described as the decomposition of a given
time series M(t) (the built-in magnetometer readings) into
a medium-to-long term baseline b(t) and a short-term cycle
c(t), as follows:M(t) = b(t) + c(t). MMF utilizes the convex
combination of the sample median and sample mean of the
signal M(t) as:

b
′
(t) = (1− α)×mean(M(t)) + α×median(M(t)) (1)

where, α ∈ [0, 1] is the ’contamination factor’. We then
smoothed the b

′
(t) with a Gaussian function to remove sharp

discontinuities, and obtain the fluctuation-free signals as fol-
lows: c

′
(t) = M(t)−Gaussian(b

′
(t)).
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(a) Generator neural network. (b) Discriminator neural network.
Fig. 8. Illustration of proposed DeNoising conditional Generative Adversarial Network (DNcGAN).

Fig. 9. Classification network with triplet loss training.

2) Denoising conditional GAN: After removing the fluc-
tuation noisy signals, extracting the steady-state and periodic
characteristic of our target EM signals from accessing cam-
eras/mic data requires the removal of the glitch noisy signals.
Instead of processing data in the time-domain, we transformed
time-series data (c

′
(t)) into spectrograms, due to the fact that

spectral-image contains more information on the underlying
periodicity.

In order to solve image-to-image translation problem from
the noisy spectrogram to the clean spectrogram, there are
some statistics-based methods can be applied to achieve
denoising, but the major drawback is that there are many
tunable parameters needed to be defined, and the fact that
their performances rely on the models with assumptions.
In this study, we proposed a denoising neural network to
obtain a clean spectrogram presenting only the target EM
signals using a Generative Adversarial Network (GAN) [5].
The proposed model is referred to as DeNoising conditional
GAN (DNcGAN), which is highly effective in mapping from
a source data distribution to a target data distribution. Taking a
noisy spectrogram image as its input, generator G is trained to
create a clean spectrogram by creating an output distribution
with characteristics similar to those found in actual clean spec-
trograms. Discriminator D is used to produce an adversarial
loss by detecting whether the input is from G or an actual
clean spectrogram.

DNcGAN loss. The aim of DNcGAN is to solve a min-max
problem between generator G and discriminator D.

min
G

max
D

Ex∼Pr(x)[logD(x)] +Ex̃∼Pg [log(1−D(G(x̃))] (2)

where Pg is the denoised spectrogram distribution implicitly
defined by x̃ = G(z), input z is the noisy spectrogram, and
Pr indicates the distributions of actual clean spectrograms.
Unfortunately, the adversarial loss equation (Eq. 2) above is
insufficient to constrain the generator to produce an output
close to the distribution of an actual clean spectrogram, thereby
undermining the stability of model training. Thus, we adopted
an alternative objective function referred to as Wasserstein

GAN (WGAN) [6], which utilizes the Wasserstein distance to
measure the difference between two distributions. We further
enhanced the stability of training by combining WGAN with
a gradient penalty, as follows:

L(GAN) = Ex̃∼Pg
[D(x̃)]− Ex∼Pr

[D(x)]+

λEx̂∼Px̂
[(||∇x̂D(x̂)||2 − 1)2]

(3)

where Px̂ is defined as uniform sampling along straight
lines between pairs of points sampled from Pr and Pg . In
our experiments, we set λ at 10 with all any other hyper-
parameters matching those of WGAN-GP.

Generator G in Fig. 8(a) has network architecture similar
to that of the “encoder-decoder” network. The “encoder” has
a three-layer convolutional structure denoted as Conv(32) −
Conv(64) − Conv(64). Each layer is followed by a ReLU
activation function. To enable the extraction and retention of
more information, we increased the number of weighted layers
between the encoder and decoder. We also used two residual
blocks as this allows the skipping of connections to concate-
nate all channels between layers. To capture image details,
the decoder includes three deconvolution layers denoted as
DeConv(64)−DeConv(64)−DeConv(32) to upsample the
image in order to magnify slight differences.

Discriminator D (see Fig. 8(b)) is a network of “encoder”
structure that contains four convolution layers, denoted as
Conv(32)− Conv(64)− Conv(64)− Conv(128)−Dense.
The other three convolutions use LeakyReLU and the first
layer uses the ReLU activation function. The discriminator
determines whether an image from the generator is similar to
sufficiently similar to actual clean spectrogram samples. The
binary decision generated by discriminator is then sent to an
optimizer to enhance the performance of generator.

3) Classification with Automatic Adaption to Mobile De-
vices: After denoising the given EM spectrogram, our final
objective is to determine whether the denoised spectrogram
includes signals characteristic of tasks involved in accessing
camera/mic data (presumably by eavesdropping apps). Unlike
the noisy EM signals generated by typical app tasks/ services
(unvarying across devices) [3]; target EM signals tend to vary
with the mobile devices (see Fig. 2). There is no practical
way to collect exemplar EM signals for every mobile device
on the market just to create a training dataset. Even if this
were attempted, it is unlikely that the classifier would perform
well when applied to new (unseen) devices. We therefore
implemented a classification neural network with triplet loss
embedding, to assist in discriminating among EM spectro-
grams. Compared with the conventional contrastive loss that
focuses on gathering as many positive examples as feasible, the
triplet loss merely requires positive samples to be closer than
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negative samples. Thus, the triple loss embedding can adjust
to various degrees of intra-class variance for distinct classes
and be utilized to train the classification model to find common
features of EM signals generated by accessing multimedia data
across various mobile devices.

Fig. 9 summarizes the concept of triplet loss training.
The triplet embedding module generates (sa, sp, sn) triplets,
where sa is an anchor sample (e.g., “audio”), sp is a positive
sample in the same category (e.g., “audio”) as sa, and sn is
a negative sample from any other category (e.g., “camera”).
All three samples are passed through the NN for embedding
function f . Finally, triple loss is used to minimize the distance
between embeddings (f(·)) of the anchor and positive samples,
and thereby maximize the distance between the anchor and
negative samples. Let T be the set of all possible triplets
τ = (sτa, s

τ
p , s

τ
n). The triplet loss is meant to enhance sep-

aration between positive and negative pairs by adding a safety
margin m ∈ R+. For any triplet τ , the aim is to achieve
△τ +m < 0 where

△τ= ||f(sτa)− f(sτp)||22 − ||f(sτa)− f(sτn)||22 (4)

More precisely, loss can be defined as follows:

L(T ) =
∑
T

max(0,△τ +m) (5)

The neural network classification (embedding function f )
is denoted as Conv(32) − Conv(64) − Conv(64) −
Dense(128) − Dense(32), and the details are presented on
the left of Fig. 9. After embedding, we add a softmax layer
to identify instances of eavesdropping.

4) Overall Training: Training the DNcGAN and the sub-
sequent classification model involved slicing labeled instance
and exemplar magnetometer readings into time windows of
5 seconds with overlap of 1 second (default settings). We
then implemented MMF to filter out fluctuation signals and
transform the resulting signals into spectrogram images (with
a unified pixel size: 64× 64× 1).

After preparing the training dataset, it is necessary to train
the two neural networks: DNcGAN and classification NN. If
DNcGAN were trained independently, then the discriminator
could only determine whether the denoised spectrogram is
“generated” or “real”, which would result in a larger number
of candidate denoising results. For example, the generator
cleaned the noisy spectrogram labeled “audio” to create a
clean spectrogram with a distribution similar to that of “none”;
however, the entire DNcGAN will not be punished because
that the discriminator cannot distinguish them. Therefore, we
concatenate the subsequent classification NN using DNcGAN
to enhance discriminative ability. Note that during training,
the positive and negative samples in each triple τ were
randomly sampled from clean spectrogram images which are
transformed from the exemplar signals. In the experiment, we
employed the Adam optimizer in the training and the overall
loss function was denoted as: L = L(GAN) + L(T ).

noise + 
“audio”

noise + 
“camera”

noise + 
“cam&audio”

(a) GNcGAN (overall training)

noise + 
“audio”

noise + 
“camera”

(b) GNcGAN
(trained alone)

noise + 
“audio”

noise + 
“camera”

(c) Low-rank matrix
decomposition

Fig. 10. Comparisons between denoised spectrograms generated by several
denoising methods and ground truth. First row is the noisy images, second
row is the denoised results, and third row is the ground truth

VI. EVALUATION

A. Experiment Setup

Mobile Devices and Participants: We selected 16 testing
smartphones, and ten of the devices were used to train the
proposed MAGDEFENDER system, and six were used to
evaluate the performance when applied to unseen devices. We
also recruited 8 university students from different majors as
our participants, including 5 males and 3 males and ranging
from 22 to 27 years old. Eight participants were each allocated
two mobile devices pre-installed with our customized app.

Dataset Collection: During each participant’s use of the
mobile device, the customized app periodically requested
camera/mic data in the background with the user’s permission,
and recorded the corresponding starting and ending timestamp
of accessing multimedia sensor data for subsequent EM signal
labeling. Also, users could used the audio/camera-related apps
and they need to record the related app usage timestamp
artificially. Throughout the whole process, the customized app
continuously recorded the built-in magnetometer readings and
saved them to local storage. The EM dataset was labeled using
the same methods outlined in Sec. V-B.

Model Training: We utilized the 10−fold cross-validation
procedure for determining the best parameters of the MAGDE-
FENDER model (e.g., the denosing GAN model and the
classification NN). In details, the 9 folds (the selected 9
mobile devices) of the training dataset were used to trained
the MAGDEFENDER, and the fold left out was used for test.
By applying grid search techniques, we can determine the final
model parameters with the best performance.

B. Methodologies Evaluation

1) Denoising Performance: We first evaluated the perfor-
mance of the DNcGAN generator (denoiser) when trained sep-
arately and trained in conjunction with the classification NN
with the training dataset. We also assessed a conventional low-
rank matrix decomposition method (RLRM) [7] for the sake of
comparison. The results in Fig. 10 show that the output of the
generator after training DNcGAN alone confused information
related to multimedia sensors, and the conventional matrix
decomposition method resulted in the loss of many spectral
features. As expected, training DNcGAN in conjunction with
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Fig. 11. Performances between different denois-
ing methods. RLRM is a matrix decomposition
method in [7].
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Fig. 12. Performance of the classification NN
models on the unseen devices with different loss
functions.
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Fig. 13. Time interval lengths vs. eavesdropping
behaviors classification performance.
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Fig. 14. Confusion matrix while classifying eavesdropping behaviors, where
A-D denote “none”, “audio”, “camera”, and “camera-audio”.

the classification NN enabled the generator to eliminate noise
while retaining distributions corresponding to the operation of
multimedia sensors.

The efficacy of denoising was assessed via comparisons
with popular classification models on denoised spectrograms
and raw noisy spectrograms. In details, we implemented
conventional spectral features (e.g., mean value, standard
deviation, kurtosis, crest factor, flatness) in conjunction with
four conventional machine learning methods (kNN, SVM,
Randoom Forest, and adaboost), and a CNN (with the same
model in the left of Fig. 9) for classification. From the results
in Fig.11, we can draw the following conclusions: (1) Direct
classification of raw noisy spectrograms resulted in very poor
performance, with the best performance of 73.5% accuracy
when using a CNN. (2) Conventional matrix decomposition
and DNcGAN (trained alone) both led to the loss of important
information, thereby negating any improvement in accuracy.
(3) DNcGAN (overall training) presented satisfactory perfor-
mance (97.3%) in identifying instances of eavesdropping.

2) Triplet Loss Embedding: We sought to verify the effec-
tiveness of triplet loss embedding by assessing the classifica-
tion performance when applied to unseen devices. This was
achieved by designing another classification NN with the same
architecture (in the left of Fig. 9) but a normal contrastive loss
function instead of triplet loss. Classification performance was
assessed using six unseen devices with the testing dataset. The
classification results in Fig. 12 demonstrated that triplet loss
training enhanced classification performance when applied
to unknown devices. And confusion matrices of classifying
cam/mic working status on the selected three smartphones
(whose performances were not relatively well) were presented
in Fig. 14, we found that there existed the misclassification of
“camera” and “camera-audio”. Overall our proposed system
still obtained average 91.5% of accuracy, and 93.6% recall
when detecting eavesdropping on unseen devices.

3) Eavesdropping Time Interval Selection: MAGDE-
FENDER was tasked with the extraction of usable information
from magnetometer readings over fixed time intervals of

various lengths. Assigning a short time interval would enable
fine-grained differentiation between eavesdropping behaviors;
however, this would greatly hinder classification performance,
due to a lack of time series information for feature extrac-
tion. After the removal of time-dependent fluctuations, we
divided the magnetometer readings into segments matching
the assigned time intervals to generate spectrogram images
(64×64×1 pixels). As shown in Fig. 13, setting a time interval
of greater than five seconds improved the average accuracy to
roughly 97% with negligible standard deviation.

C. Power Consumption

MAGDEFENDER depends on continuous magnetometer
readings to detect eavesdropping As a result, our proposed
MAGDEFENDER consumes more power than software-based
solutions. We measured the power consumption on the 16
mobile devices by running the MAGDEFENDER app for 1
hour and comparing the results when the phones were left
to idle and when the phones were running a typical software
solution, Access dots [8]. The average power consumption
results showed that continuously running MAGDEFENDER for
1 hour consumed only 11% more power than idling and only
7% more than running Access dots on average. This is ac-
ceptable because our system can achieve more powerful anti-
eavesdropping at the expense of a little energy consumption.

VII. RELATED WORK

A. Eavesdropping Detection Techniques

Hook-based solutions: Hooking is a technique for inserting
codes into a system call for alteration, and it can be used to
intercept the applications’ requests, thus to realize the sensor-
related behavior check. FireDroid [9] intercepted the system
calls to identify if an application is executing dangerous ac-
tions at runtime. DeepDroid [10] dynamically hooked system
processes in order to find details of applications’ requests.
However, the attackers can also apply the similar interception
to bypass these hook-based solutions either by substituting the
sensor-related system calls for its own implementation, or by
breaking down them completely.

Trustzone-based solutions: Some researchers have pro-
posed techniques based on Trustzone that support for iso-
lated execution of secure applications and for secure pe-
ripherals [11], [12]. However, utilizing the above Trustzone-
based techniques requires modifications to various parts of
the system software and hence is not easily deployable by
ordinary users on their mobile systems. Meanwhile, device
and TEE vendors lock down the TEE in commercial phones
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before they are shipped, so normal app developers (other than
the vendors) can hardly changes to the code inside the secure
world. By contrast, the MAGDEFENDER system is able to
detect any operations of accessing to multimedia data directly
from magnetometer readings, which is also easy deployable,
e.g.installing an app. MAGDEFENDER can also detect the
eavesdropping behaviors from the OS itself and the malicious
apps in means of transplantation attacks.

B. Side-channel Sensing on Mobile Devices

Shmatikov [13] illustrated how the memory footprint left
by browsers can be used for website fingerprinting. Several
researchers have shown that power consumption traces [14]
can be used to infer the opening of apps and websites. In
[15], the authors designed learning systems to automatically
fingerprint apps using encrypted network traffic. Note however
that it is very difficult for third-party apps to acquire the system
kernel data (i.e., CPU/memory usage, power consumption)
with high sampling rates (≤ 20Hz).

The EM side channel has been exploited for attacking
electronic devices. [16], [17] created a novel near-field com-
munication system between mobile devices. In [18], mobile
devices were characterized based on their near-field EM sig-
nals. Several researches exploited the reaction of the built-
in magnetometer to EM activity to infer apps and webpages
opened on victim’s laptop/phones [3], [19]. In this work,
we prove that the built-in magnetometer readings accurately
capture the EM emission signal generated by the app accessing
the multimedia sensor data, and also show the feasibility of
identifying the eavesdropping behaviours with the elaborate
deep learning network.

VIII. CONCLUSION

In this paper, we proposed a novel EM-side-channel sensing
technology-based model, MAGDEFENDER, that utilized the
magnetometer built into mobile devices to detect eavesdrop-
ping via on-board mics and cameras. Various experiments
have proved the performance of MAGDEFENDER, proving
its effectiveness to detect the whole eavesdropping behaviors
that access to the multimedia sensors (i.e., cameras and/or
microphones) on the mobile devices.
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