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Abstract—Smart devices are proliferating in every aspect of
our lives, providing convenience but also exposing us to the risk
of information leakage at any moment. Attackers can monitor the
user and infer private information such as the personality and
preferences by stealing the behavior information. In this paper,
we investigated the potential threat of information stealing via the
leakage current of laptop and electrodes in wearable devices (e.g.
smart watches and bracelets). Specifically, the leakage current in
the laptop adapter can flow from the metal casing into the human
body and be collected by electrodes in wearable devices when the
user is using a laptop with a metal casing (e.g. MacBook). We
verified the correlation between leakage current and working
states of the laptop, where different operations corresponding
to different CPU instructions can generate different leakage
currents. Based on this, we propose LeakThief, the system consists
of three components, leakage current detection, application oper-
ation detection and application recognition. The experiments in
real-world environment demonstrated that the proposed system
is able to recognize 10 common applications with high accuracy,
including launching-based (97.5%) and in-application operation-
based recognition (83.8%).

Index Terms—Side Channel Attack, Leakage Current, User
Privacy, Laptop

I. INTRODUCTION

The COVID-19 pandemic has permanently changed the
device usage patterns of people, with lifestyle changes such as
remote working and digital education driving the number of
devices people own and use to continuously increase. There
will be 16.8 billion mobile devices such as personal computers
(PCs), tablets and smart phones in use worldwide by 2023
[1]. While bringing convenience to work and study, these
devices also increase the risk of information leakage to the
users. Attacks on PCs, smart phones and other devices are
proliferating, and researchers have demonstrated the feasibility
of stealing user information based on motion signals [2]–[4],
acoustic signals [5], [6], wireless signals [7]–[9] and magnetic
signals [10], [11].

The wearable properties of smart watches and bracelets
meaning that the users are exposed to the risk of information
leakage for long periods of time, we therefore consider the
security of these devices to be of greater concern. As these
devices continue to push the boundaries of performance and
service user-friendliness. More and more consumers are in-
clined to wear devices such as smart watches and bracelets
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Fig. 1. The behavior information stealing on laptop.

in their daily lives. Security issues of wearable devices have
become a hot topic of research, and systems of information
leakage based on motion signals [12], [13] and acoustic signals
[14] have been proven.

Apart from the built-in motion sensors and microphones,
the security risk of electrodes in smart watches or bracelets
has been overlooked. The electrodes in a smart watch monitor
ECG of the user by detecting the micro electrical pulses of
heart beats [15]. By wearing these devices, people are able to
keep an eye on their heart rate and other information while
working and exercising. However, we found that the electrodes
close to the human body can steal user’s behavior information
while using the laptop with a metal casing, such as which
application they have launched or in which application they
are performing the operation. This allows monitoring of the
user’s behavior to infer their interests and personality [10],
[16] and even to assist other attack systems [11].

The signal collected by the electrodes comes from the
safety capacitor [17] in the adapter of a laptop with metal
casing, such as a MacBook. As shown in Fig. 1, when using
a laptop, the user’s hands naturally touch the metal casing
of the laptop. The leakage current from the safety capacitor
flows into the body through the metal casing. LeakPrint [18]
used leakage current of laptop in its idle state to sense the
human capacitive for user identification. We further explored
the principles of leakage current, and verified the correlation
between the leakage current and the working state [19] of
the laptop. When the user launches different applications, the
CPU executes different instructions that change the working
state of the laptop, thus affecting the leakage current. Recent
researches [20] have demonstrated that the built-in electrodes
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of smart watch can perceive the weak current in the human
body. Therefore, the electrodes in wearable devices present
a potential risk of information leakage on user behavior by
monitoring the leakage current from the laptop.

However, the lack of API for accessing the built-in electrode
of commercially available smart watches that make it difficult
to obtain raw data from the electrodes. In this paper, we
disassemble a commercially available smart watch (Apple
Watch S6) and read the leakage current collected from the
built-in electrodes through an external AD2 [21]. Based on
this, we built a behavior stealing system via leakage current,
LeakThief, to verify and alert users early on the potential
security risks of the electrodes in wearable devices.

Currently, the growing user demands for applications are
driving increasing hardware performance, the electrodes are
enabling attractive applications in human-computer interac-
tion, such as emotion recognition [13] and gesture recognition
[22], [23]. As a result, the current restrictions on the API
for accessing the built-in electrode of smart watches have a
tendency to open up in the future. At the same time, metal
casing is a trend that is gaining popularity among consumers
due to its physical strength and thermal performance, with
companies such as Apple, HP and HuaWei all launching
laptops with metal casing. Therefore, we believe that user
behavior stealing based on leakage current will be a universal
and non-negligible potential security threat.

The development of a behavior stealing system based on
the leakage current poses a number of challenges. First, we
have to extract the signal segments corresponding to the user’s
operations from the weak signals collected by the electrodes;
Second, different operations of applications have different
levels of discrimination, which affects the performance of the
application recognition; and finally, operations within the same
type of applications may generate similar leakage currents.

We developed LeakThief to address these challenges. First,
we compared the spectral characteristics of the signals at
different states of power consumption and used the collected
signals to compute logarithmic short-time energy (log-STE)
signal for operation detection. Second, the leakage currents
during application launching process are more discriminating
than in-application operations. We discarded operation sam-
ples of closing the application and classified all operation
samples into two categories: application launching and in-
application operation. Finally, we extracted features of dif-
ferent applications using Temporal Convolutional Network
(TCN). The contributions of this research are as follows:

• We explored the the dynamic characteristics of leakage
current from laptops with metal casing, and verified the
feasibility of behavior stealing from the leakage current.

• We verified the correlation between leakage current and
the working state of laptop, and detected user application
launching and operations from the leakage current.

• We divided the operations into application launching and
in-application operations, and achieved the application
recognition based on the leakage current;

• We conducted experiments in a real environment and the
results demonstrated the potential threat of LeakThief in
behavior stealing based on application launching (97.5%)
and in-application operations (83.8%).

II. RELATED WORK

A. Motion Signals

Numerous daily activities of people will generate capture-
able motion signals that can lead to information leakage,
including the body movements captured by wearable devices
[12], [13], and vibrations of surrounding objects caused by
operations such as tapping the keyboard or the smart phone
[4], [24].

B. Acoustic Signals

Behaviors such as handwriting or keyboard tapping in-
evitably produce distinctive acoustic signals, and researchers
have demonstrated the feasibility of inferring keyboard tapping
[5] and handwriting content [6] based on acoustic signals.

C. Electromagnetic Signals

Recent researches used the electromagnetic signals to steal
the information about the victim’s behavior. Enev [25] con-
firmed that TVs can leak information about household activ-
ities from power lines. Genkin [26] achieved the key extrac-
tion from laptops. MagThief [10] used the built-in magnetic
sensors of smart phone to identify the different applications.
MagAttack [11] steal the user’s behavior while using laptop.

Compared with Enev, information leakage from laptops
can cause more serious damage than home activities such
as playing videos. The key extraction attack requires the
attacker to perform specific calculations on the target device.
Meanwhile, MagAttack required the smart phone and laptop to
be in close proximity (less than 3cm) to achieve high accuracy
of application recognition. With these requirements, the attack
is significantly more difficult to execute.

LeakThief exploits the correlation between leakage current
and the working state of the laptop to enable application-level
information stealing. The system passively receives the leak-
age current containing information about the user’s operation.
Furthermore, users are not fully aware of the threat posed by
the built-in electrodes of wearable devices. Therefore, attacks
based on leaking current to steal the behavior information
will become a non-negligible security risk and we proposed
LeakThief to alert users early.

III. BACKGROUND

A. Leakage Current of laptop

1) Leakage Current: As a laptop with a metal casing (such
as a MacBook) is connected to a power source, the metal
casing of the laptop carries the leakage current from the
adapter [17]. The leakage current comes from the Y-capacitor
(safety capacitor) of the adapter, which is part of the EMI
(electromagnetic interference) filtering circuit of the switching
power supply to eliminate common mode interference and im-
prove electromagnetic compatibility, and is usually configured
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Fig. 2. Fundamental principle of leakage current: 2(a) Under normal use,
leakage current flows from the laptop through the user’s hands into the body
and eventually into the ground; 2(b) The electrode at the wrist can perceive
the leakage current in human body.

on both the high and low voltage sides of the SMPS (switch
mode power supply). As a common mode capacitor, grounding
of the Y capacitor generates leakage current [18], [27]. The
leakage current in the metal casing can be written as:

I = 2πfChUh + kClUl + Icmi (1)

where the leakage current in the high voltage side is
2πfChUh. f refers to the mains frequency, Ch indicates the
size of the capacitor, and Uh indicates the voltage. In the low-
voltage side, k is the leakage current constant (about 0.01 to
0.03 depending on the manufacturer), Cl and Ul denote the
corresponding Y capacitor and voltage. The Y capacitors used
in laptop adapters are typically around 5nF . Icmi represents
the common mode interference (high-frequency harmonics) in
the SMPS and a laptop powered by the 220V/50Hz mains
generates roughly 0.3mA of leakage current (Ul = 12V ).

Of these, the common mode interference is affected by the
loading state [19], such as the working state of the laptop.
Therefore, we attempted to capture the working state of laptop
from the common mode interference and further extract the
behavior information.

2) Human-Machine Channel: When the user is using the
laptop, the user’s hands are placed on the laptop and the feet
are placed on the ground naturally. In this case, the metal
casing, the user and the ground form a current path and the
leakage current flows from the metal casing through the body
and eventually into the ground, as shown in Fig. 2(a).

When the user wears a smart watch or bracelet, the elec-
trodes on the backside of the smart watch or bracelet close
to the body will be affected by the leakage current flowing
through the body [28], as shown in Fig. 2(b). We disassembled
a commercially available smart watch (Apple Watch S6) and
used the built-in electrode to receive the leakage current.

B. Feasibility of Application Recognition

1) Modulation of Leakage Current: Since the leakage cur-
rent of Y-capacitors in the adapter is related to the loading
state (i.e. the working state of laptop) [19]. We attempted to
modulate the electronic unit of the laptop (e.g. CPU, electronic
fan, etc.) to vary the working state. We chose to investigate
the relationship between working state and leakage current by
modulating the CPU [29]. Since under normal working state,
the CPU consumes between 20W and 90W of power, while
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Fig. 3. The spectrogram of the leakage current presents the leakage current
collected by the electrodes, where the two dashed lines indicate the time when
the user touches the metal casing of laptop and the time when the CPU power
consumption changes respectively.

the electronic fan consumes only 3W . We used a MacBook
pro in the feasibility experiment. We perceived the changes
in the leakage current flowing through the body using the
built-in electrode of Apple Watch S6 at the user’s wrist, and
collected the leakage current using AD2 with the sampling
rate of 192KHz.

As shown in Fig. 3, we generated the spectrogram of the
leakage current collected by the electrodes via Short Time
Fourier Transform (STFT). The weak signal collected by the
electrode when the user does not touch the laptop comes
from the human antenna effect under the influence of the
ambient electric field [20]. The magnitude of the signal is
increased when the user touches the metal casing of the laptop.
Besides, when we modulate the CPU to the state of high power
consumption, the amplitude of the leakage current in the high
frequency band increases further and is mainly concentrated
at 80KHz to 85KHz. Therefore, we exploited the leakage
current in this frequency band in the feasibility experiment of
application recognition.

2) Application Recognition based on Leakage Current:
Previous researches [11] have demonstrated the feasibility of
application recognition during application launching based on
system calls. The start-up service framework WindowServer
sends an application start-up message, which runs the re-
quested application via system calls. Different applications
will invoke different system calls at different frequencies
during the launching process.

The CPU chip consists of a large number of CMOS (Com-
plementary Metal Oxide Semiconductor) transistors arranged
in a lattice, which are responsible for performing arithmetic,
logic and control operations etc. The different system calls
contain different sets of instructions executed by the CPU.
The CPU involves different numbers of CMOS transistors in
the execution of various instructions, which generates different
power consumption and thus affects the leakage current of the
adapter. Therefore, for different applications, different system
calls invoked during the launching process will generate dif-
ferent leakage currents.

IV. THREAT MODEL

In this section, we introduce the threat model of LeakThief.
The goal of the attacker is to steal the user’s behavior
information while using the laptop, such as which application
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the user has launched and in which application the user is
operating.

We consider the following attack scenario: the user is using
a laptop with metal casing and keeps the laptop in charged.
The user is not wearing gloves and is not using an external
keyboard or mouse. While using the laptop, the user’s hands
are naturally in contact with the metal casing. The user wears
a smart watch or bracelet with electrodes that can perceive
the leakage current from the laptop. Based on the leakage
current, the attacker is able to steal information about the
user’s operations while using the laptop. This enables the
monitoring of the user’s operations and even inferring the
user’s interests and personality from the applications used [16].

V. SYSTEM DESIGN

A. Preprocess of Leakage Current

1) Detection of Leakage Current: In order to achieve
application recognition based on leakage current, the system
must be able to accurately detect the time when the user
touches the laptop. As shown in Fig. 3, when the user touches
the laptop, the electrodes are able to perceive an increase
in the magnitude of the leakage current flowing through the
body. The increase in amplitude is concentrated in the high
frequency band (50KHz to 85KHz). Therefore, the most
straightforward method is to set an intensity threshold for the
leakage current in this frequency band to determine whether
the user is touching the laptop or not.

A band-pass filter with a high order cut-off is well suited to
the main frequency distribution of the signal. For the effect of
low frequency noise, a band-pass filter was used to improve
the SNR of the signal, as shown in Fig. 5. The amplitude
enhancement caused by the leakage current is clearly visible
in the filtered signal, but the fluctuation of the signal is not
conducive to the detection of leakage current. To reduce the
effect of signal fluctuations, we set a processing window of
0.01s and calculate log-STE of the processing window as
follows:

E(j) = 10 log

j+0.01×Fs∑
i=j

y(i)2 (2)
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where y(i) represents the leakage current signal and Fs

represents the sampling rate. As shown in Fig. 5, by setting a
threshold we are able to detect the leakage current with a low
delay.

2) Preprocess of Leakage Current: After the detection of
leakage current, we need to perform preprocessing to extract
the signal in the frequency band associated with the CPU
instructions. Due to the significant fluctuations in the leakage
current collected by the electrodes and the fact that the
amplitude of the signal does not change consistently across the
different frequency bands when the CPU power consumption
is boosted. Therefore, we need to filter the signal to improve
the correlation between the signal and the CPU state. We
performed the screening of frequencies based on the detection
of leakage current.

As shown in Fig. 6, we took separate samples of the
leakage current at low and high CPU power consumption
with a sample duration of 1s, so we were able to obtain
frequency information with an accuracy of 1Hz. We used
the Fast Fourier Transform (FFT) to calculate the spectrogram
corresponding to the two samples. Consistent with the feasi-
bility experiments, when CPU power consumption increases,
the increase in the magnitude of the leakage current is mainly
concentrated around 83KHz.

Similar to the detection of leakage current, we extracted the
signal at the target frequency using a band-pass filter (82KHz
to 84KHz). Also, to address the fluctuations present in the
signal, we chose the same log-STE signal for processing,
and we set the window length to 0.05s. To reduce the
computational burden on the system, we down-sampled the
filtered signal before calculating the log-STE signal.
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Fig. 7. The leakage current when launching different applications.

3) Segmentation of Leakage Current: The leakage current
collected by the electrodes is able to reflect the operations
performed by the user on the laptop. However, when the
user performs simple operations such as typing or clicking,
the signal-to-noise ratio of the signal is significantly reduced,
making it difficult to directly extract the signal patterns corre-
sponding to these operations.

We attempted to extract the different operations of the user
by segmenting the leakage current based on the amplitude.
The signal was processed using a mean window function
with a processing window of 0.5s to further smooth out the
fluctuations in the signal. Based on the down-sampling during
preprocessing, the smoothing window function will not impose
too much computational burden.

We segmented these operations by setting the amplitude
threshold, where the start threshold is Mstart = 0.5 × A1 +
0.5×A2 and the end threshold is Mend = 0.3×A1+0.7×A2.
A1 and A2 indicate the maximum and minimum values of the
signal. Finally, we normalized the samples and widened them
on the time axis to keep the sample length consistent; we set
the sample length to 5s.

Compared to more complex instructions such as launching
an application, simple instructions such as typing are usually
reflected in the leakage current as narrow pulses. We can
remove most of the pulses caused by typing by setting the
thresholds. Consider that samples caused by typing may be
captured incorrectly, and that operations such as copying,
pasting text and closing applications possess similarities across
applications. In order to improve the accuracy of application
recognition, we need to filter the segments after segmentation.

B. Application Recognition

1) Application Launching Detection: The launching pro-
cess of an application involves complex system calls [11], and
the different instructions for different applications are reflected
in the variation of the leakage current. Therefore, we attempt
to extract segments from the application launching process to
achieve high accuracy application recognition. We selected 10
commonly used applications (Tab. I) and collected samples
of leakage current corresponding to the launching process and
different in-application operations, such as copy and paste text,
save and read files and close applications.

We performed the sample collection and processing over
3 days, with an interval of 3 days between each two days.
To ensure signal stability, we did not change the version of

TABLE I
SUMMARY OF APPLICATION OPERATIONS.

Application Type Operation
PyCharm programming open and save file, close app

CLion programming open and save file, close app
QuickTime video pause and start video, close app

IINA video pause and start video, close app
Microsoft Word office open and save file, close app
Microsoft PPT office open and save file, close app

Chrome browser click the link and close app
Safari browser click the link and close app
Chess game save, load the game and close app

Stardew Valley game load the game and close app

TABLE II
ACCURACY OF APPLICATION LAUNCHING DETECTION.

KNN LDA SVM RF CNN
93.7% 96.3% 98.6% 97.5% 99.3%

the system or the applications during this time. As shown
in Fig. 7, the samples generated by the applications of the
launching process can remain stable without changing the
version. We classified all samples into two categories, launch-
ing and in-application operation, and used classical time-
series algorithms such as k-nearest neighbors (kNN), linear
discriminant analysis (LDA), support vector machine (SVM),
random forest (RF), and convolutional neural network (CNN)
for classification. The CNN model contains four 1-dimensional
convolutional layers and two fully-connected layers, with a
max pooling layer connected after every two convolutional
layers. The classification accuracy is shown in Tab. II.

2) Recognition based on Application Launching: Different
applications generate different signals during startup, and we
build an application recognition model based on Temporal
Convolutional Network (TCN) [30] and Residual Network
(ResNet) [31]. The main body of our proposed model is the
TCN module, and each TCN module consists of four dilation
convolutional layers, which are able to acquire a larger per-
ceptual domain with the same amount of computation than the
normal convolutional layer. Each two dilation convolutional
layers are connected to a max pooling layer, and feature
information of different depths is fused through a residual
connection, as shown in Fig. 8.

Specifically, we start with initial feature extraction of the
leakage current samples through the convolutional layer. We
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use a 32-layer convolutional kernel of dimension 11× 1. We
then use two consecutive TCN modules, in which the 32-
layer dilated convolutional scales is 7 and 5, and the extraction
dilutions in the modules is 1 and 2. The application recognition
is then implemented after two fully-connected layers and the
SoftMax activation function. The number of neurons in the
fully connected layers is 1024 and 64.

3) Recognition based on Application Operation: Compared
to the samples of the leakage current corresponding to the ap-
plication launching, it is more difficult to distinguish between
other operations performed by the user in different applica-
tions, such as pause and play a video, copy and paste text,
etc. These operations involve far fewer instructions than the
launching process. We attempted to differentiate all operations
performed by the user within the application in a uniform
manner. For the in-application operations, system achieved an
accuracy of about 65.3% based on the proposed model. By
comparing the samples of different application operations, we
found that the samples generated by closing the application
have a higher similarity to those generated by in-application
operations during application usage.

Fig. 9 shows the leakage current samples from two different
types of applications (Safari (Browser) and IINA (Multime-
dia)) during the closing process. It can be seen that both
applications generate two narrow pulses during the closing
process, and that the amplitude of the two pulses and the
interval between them are similar. Therefore, we considered
that the leakage current generated by closing application were
less identifiable and attempted to improve the accuracy of
the application recognition based on in-application operation
by removing the samples corresponding to closing different
applications.

Specifically, in a continuous period of segments between
two application launchings, system assume that the last seg-
ment corresponds to the operation of closing the application
and discard it. After removing the samples during the closing
process, the accuracy of application recognition based on
the in-application operation is about 83.8%. Furthermore,
the application recognition can be optimized with contextual
information.

VI. EVALUATION

A. Evaluational Setup

In the experiment, we used a MacBook Pro as the in-
formation stealing target of LeakThief and used the built-in

electrodes of Apple Watch S6 at the user’s wrist to collect the
leakage current, as shown in Fig. 10. The MacBook Pro was
placed on a desk and kept in charge. The user’s hands were
placed on the keyboard while using the laptop, naturally in
contact with the metal casing. During the experiment, the user
was not wearing gloves and did not use an external keyboard or
mouse. We used the AD2 (DILIGENT) with the sampling rate
of 192KHz to collect the leakage current. Once the wearable
manufacturer opens up access to the built-in electrodes, we can
implement the reading of leakage currents on the wearable
device and transmit the signal to a server for user behavior
recognition via WiFi.

We collected the leakage currents of different operations
on 4 separate days, including the application launching and
in-application operations, as shown in Tab. I. We selected
10 common applications covering 5 types including program-
ming, video, office, browser, game. To verify the stability of
the leakage current, the interval between each acquisition was
3 days. For each application, we collected the leakage current
of launching process and the in-application operations 40 times
each. We divided the collected samples into a training set and
a test set for cross-validation.

In the detection of leakage current, we utilized a band-
pass filter of 50KHz to 85KHz and set the window function
length to 0.01s to calculate the log-STE signal to detect the
touch behavior. In the detection of operations, we used band-
pass filters from 82KHz to 84KHz and calculated the log-
STE signal with the same window function to detect both
application launching and in-application operations. We set the
sample time length to 5s to guarantee the integrity of the in-
formation during the application launching process, as shown
in Fig. 7. Before operation recognition, we reduced the sample
length to 1200 by down-sampling to reduce the redundancy of
information in the samples and the computational burden.

B. Micro Benchmarks

1) Operation Detection: We performed application launch-
ing, application closing and other in-application operations
on 10 commonly used applications. After preprocessing the
leakage currents, we implemented operation detection by seg-
mentation based on amplitude. We evaluated the performance
of operation detection with precision and recall. As shown
in Fig. 11(a), the system maintains high precision and recall
in operation detection of different applications. In our exper-
iments, we found that the detection accuracy for application
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Fig. 11. Evaluation of the LeakThief system.

launching was significantly higher than that for in-application
operations. This is because the instructions that an application
needs to execute during the launching process are usually
more complex and more stable compared to the in-application
operations.

We then evaluated the performance of the operation launch-
ing detection in terms of precision and recall. A uniform
model for the detection of application launching was devel-
oped for different applications. As shown in Fig. 11(b), the
system maintains high precision and recall in the detection of
launching operations across different applications.

2) Application Recognition: Application recognition con-
tains both launching-based recognition and in-application
operation-based recognition. The accuracy of the launching-
based recognition is significantly higher than that of the
in-application operation-based recognition, with 97.5% and
83.8% respectively. We can optimize the results of in-
application operation recognition with information about the
application launching.

C. Influence of System Parameters

1) Influence of Sampling Rate: In the feasibility experi-
ment, we set the sampling rate of AD2 to 192KHz to improve
the signal-to-noise ratio of the leakage current. Based on the
fluctuations of the signal in the high frequency band of the
leakage current (82KHz to 84KHz), we were able to achieve
the application recognition based on launching process or in-
application operation. It is not common for devices to meet the
sampling rate requirement, so we seek to reduce the limitation
of the sampling rate based on the aliasing effect [32]. The
aliasing effect can be written as:

fa = min|fo −Nfs| (3)

where N is an integer, fa, fo, and fs respectively indicate
the aliasing frequency, the signal frequency, and the sampling
rate. We are able to acquire signals in the high frequency band
at a low sampling rate. For example, with the sampling rate of
48KHz, the 80KHz signal can generate a aliasing signal at
a lower frequency (16KHz). In this experiment, we evaluated
the application recognition accuracy of LeakThief in at various
sampling rates from 48KHz to 192KHz. During this process,
we kept the sample time and length at 5s and 1200. As shown
in Fig. 11(c), as the sampling rate was reduced from 192KHz

to 48KHz, the accuracy of application recognition didn’t
show a significant decrease, including application launching
and in-application operations.

2) Influence of Sample Time: The same operation of
the application, including the application launching and in-
application operation, is not affected by the user’s operation
time. As shown in Fig. 7, different instructions executed
by different applications during the launching process will
generate signal samples of different length and amplitude in
the leakage current. For 10 common applications, we found
that the duration of the different operations of the application
does not exceed 5s. Therefore, we set the sampling time to
5s to cover the entire process of the application operation and
avoid the information loss.

In this experiment, we evaluated the application recognition
accuracy of LeakThief with the sample time ranges from 1s
to 5s and kept the sampling rate at 192KHz. As shown in
Fig. 11(d), with a sample time of less than 3s, the recogni-
tion accuracy of the application launching was significantly
reduced from 96.2% (sample time of 3s) to 92.4% (sample
time of 1s). This is because information during application
launching is lost as the sample time decreases. In contrast, the
majority of in-application operations duration was below 1s
and the recognition accuracy was able to be maintained.

D. Influence of Devices

1) Influence of Other Application: In normal circum-
stances, the user may be running several applications at the
same time while using the laptop. Therefore, we need to
consider the effect of other applications on the leakage current
when performing an application operation. Here, we assume
that the user only performs operations in one application at the
same time. For example, the user will not perform any other
operations during the launching process of the first application.
As shown in Fig. 11(e), we took the launching process of
Microsoft Word as an example to present the impact of other
applications on it during the running process. It can be seen
that the influence of other applications on the leakage current
during the application operations is extremely weak when no
operation is performed in other application. And it is worth
noting that during the launching process of Word, QuickTime
Player (video) is in the state of playing a video.

In this experiment, we evaluated the recognition accuracy of
LeakThief under the influence of other applications. As shown
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Fig. 12. Evaluation of the LeakThief system.

in Fig. 12(a), other applications do not affect the recognition
accuracy of the system, including launching-based recognition
and in-application operation-based recognition. However, we
did not consider some special cases, such as the user perform
the operation of other applications while PyCharm is training
the neural network. Depending on the correlation between
leakage current and CPU power consumption, this would in-
evitably affect the leakage current generated by the operation.
In this case, the system is unable to extract and recognize the
user’s operation while using the laptop.

2) Influence of User: Recent researches [20], [33], [34]
have confirmed the differences in human capacitance between
users. Therefore, we need to evaluate the performance of
LeakThief across different users to demonstrate the univer-
sality of the system. First, we compared the leakage currents
collected from different users’ wrists. As shown in Fig. 12(b),
when the CPU is at high power consumption, the spectrogram
of different users show a significant increase in the leakage
signal in the high frequency band (82KHz to 84KHz),
which is aligned with the frequency screening in the signal
preprocessing.

We hired 7 participants to evaluate the recognition per-
formance of LeakThief, containing 4 males and 3 females
with ages ranging from 21 to 43 (average age of 28.3). We
extracted the operations of users while using the laptop from
the same frequency band (82KHz to 84KHz) of the leakage
current. As shown in Fig. 12(c), the system can maintain high
performance in application recognition for different users, both
launching-based and in-application operation-based. Since the
extracted leakage currents are only related to the instructions
of application, there is no reference to the user’s operating
rate, habits, etc.

3) Influence of Laptop: Laptops with metal casing are
favored by consumers for their casing strength and thermal
performance. In order to verify the prevalence of the behavior
stealing system based on leakage current, we evaluated Leak-
Thief on laptops of different brands, including three Apple
laptops (laptop 1, 2, 3), two HP laptops (laptop 4, 5), two
HUAWEI laptops (laptop 6, 7) and one XiaoMi laptop (laptop
8). The leakage current comes from the switching mode power
supply in the adapter, and the leakage currents of different
laptops usually have different characteristic frequencies under
the operating state of high energy consumption [35]. There-
fore, we can use the spectral subtraction method to process

the spectral information of the two working states and thus
extract the characteristic frequencies of different laptops.

We collected leakage currents of launching and in-
application operations as described in Sec. VI-A. The same
application running in different operating systems can also
generate similar leakage current. Fig. 12(d) shows the leakage
current generated by Chrome during the launching process
in different operating systems. Therefore, we can consider the
same applications with different versions in different operating
systems as the same class. As shown in Fig. 12(e), the system
can maintain high accuracy in the application recognition
of different laptops. The attacker could build the dataset of
mainstream laptops with metal-casing to extend the stealing
scope. We believe that while collecting operation samples
of applications with different versions is burdensome, it is
affordable for the attacker.

VII. DISCUSSION

a) Defense: The first is a hardware-based defense strat-
egy. The leakage current received by LeakThief comes from
the safety capacitor in the laptop adapter and flows through the
human body via the contact with the metal casing of the laptop.
Therefore, we can defend against the signal as it is generated
and transmitted. For example, the user can disconnect the
laptop from the adapter to cut off the source of the signal.
Besides, the user can use an external mouse and keyboard to
avoid direct contact with the metal casing.

The second is a software-based defense strategy. The prin-
ciple behind the implementation of LeakThief is the effect of
different commands on the leakage current, which can be used
to identify the user’s behavior. When the laptop is performing
complex calculations (e.g. training a neural network), the
leakage current is unable to extract or identify the user’s
behavior. Therefore, we can add random noise to the leakage
current by randomly modulating the CPU, thus interfering with
the behavior stealing of LeakThief.

b) Limitation: We verified the application recognition
performance of LeakThief at different sampling rates in experi-
ment. VI-C1. Similar to built-in sensors such as accelerometers
[3], commercially available wearable devices (such as smart
watches and bracelets) offer only low sampling rates (below
1KHz) for electrodes to achieve tasks such as ECG monitor-
ing. The researchers [36] have increased the sampling rate of
the accelerometer to 4KHz by customizing the smart watch
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kernel. In contrast to the accelerometer, the electrodes do not
have the limitations of the sampling rate and devices such
as smart watches are capable of sampling rates of 48KHz
[37]. Therefore, we believe that developers can increase the
sampling rate of the electrodes to 48KHz by adjusting the
kernel of the wearable device, thus to meet the sampling rate
requirements of the behavior stealing based on leakage current.

VIII. CONCLUSION

This paper presents the potential threat of information
leakage via the leakage current of laptops and the electrode
in wearable devices. The proposed LeakThief uses the built-in
electrode to collect the leakage current flowing through the
user’s body when using a laptop with a metal casing, thus
to steal the behavior information. The system incorporates
detection of leakage current, detection of application opera-
tions and application recognition. Experiments demonstrate the
feasibility of LeakThief for behavior stealing, enabling appli-
cation recognition based on application launching (97.5%) and
in-application operation (83.8%). Considering the consumer
interest in laptops with metal casing such as MacBook and
the increasing popularity of wearable devices such as smart
watches and bracelets, we believe that behavior stealing based
on the leakage current will be universal and non-negligible.
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