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Abstract—Over the past years, smart ecology has attracted
much attention, especially for smart home applications. As
a key component, monitoring appliances performs significant
impact. However, appliances under monitoring usually contain
smart modules such as WiFi or Bluetooth, which are limited to
traditional appliances. Existing approaches such as distributed
sensing, energy disaggregation, and infrastructure-mediated sens-
ing, require the installation of external hardware or have a
limited sensing range. In this study, we developed AUDIOSENSE
to leverage the acoustic signal generated by the power supply
to monitor electrical appliances throughout the house remotely
from a single point. In realizing AUDIOSENSE, we proposed an
optimized Variation Mode Decomposition scheme to extract the
frequency components, as well as a data augmentation scheme
to improve generalizability and enable multi-label classification.
In experiments, AUDIOSENSE achieved mAP values of 99.3% in
multi-label classification.

Index Terms—Appliance detection; Acoustic;Side-channel

I. INTRODUCTION

Technology visionaries have long sought to create a smart

home ecosystems to enable monitoring and communication

among appliances. As the smart speakers have proliferated,

and provided voice interactive capabilities using a micro-

phone, which played a critical role to monitor smart appli-

ances. However, commercial off-the-shelf (COTS) services

require communication modules (Bluetooth, WiFi,etc.) be pre-

installed in appliances, thereby necessitating the replacement

of old appliances or the installation of smart modules. This has

greatly curtailed the dissemination of centralized smart home

ecosystems. Therefore, enabling the ability of a smart speaker

to monitor traditional appliances remotely without installing

additional hardware is of extraordinary significance.

Existing mechanisms used to monitor the operating status

of electrical appliances can be divided into three categories.

First involves the installation of distributed sensors on each

appliance, including but not limited to, RFID tags [1], mag-

netometers [2], microphones [3], or smart plugs [4], which

imposes additional costs. Second approach is referred to as

non-intrusive load monitoring (NILM) [5], which involves

tracking appliances by monitoring energy consumption based

on total energy. Unfortunately, it is unable to deal with com-

plex time-varying appliances (e.g., computers) or differentiate
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Fig. 1: Illustration of AUDIOSENSE using a smart speaker to

identify electrical appliances from a single point.

appliances of the same model [6]. Third approach is referred to

as infrastructure-mediated sensing (IMS), which utilizes side-

channels that affect the infrastructure of the house (including

gas [7], water [8], and electricity [9]–[13]). All of these

methods require the installation of additional hardware or are

ill-suited to monitor multiple appliances at the same time due

to limited range.

In the current study, we sought to propose AUDIOSENSE,a

novel software-based solution to appliance monitoring,

wherein a smart speaker monitors the status of appliances

remotely (e.g., appliances in different rooms) without needing

to install additional hardware. As shown in Fig. 1, the working

principle of AUDIOSENSE is that when an appliance is work-

ing, its power factor correction (PFC) module 1 in the power

supply generates high-frequency current (i.e., PFC signal)

(Sec. III-A), which thereby interferes with the power network

and propagates to the branch current of a smart speaker’s

power supply (Sec. III-B). Current passes through the power

supply and activates internal electric components, which emit

high-frequency sounds (Sec. III-C), due to Magnetrostriction

and Piezoelectric effect. Specific components contain specific

PFC components, which can be detected by the built-in

microphone in smart speakers. Analysis of these sounds allows

AUDIOSENSE to infer the working states of the appliance.

The detection and identification from longer distances (e.g.,

> 50m), imposes several challenges. First, the frequency

bands of PFC signals from different appliances tend to overlap,

resulting in a complex mix of signals. In situations involving

1Not all appliances have a PFC module but it’s becoming more and more
common. We will discuss it in Sec. III-A
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multiple appliances operating simultaneously, it is necessary

to differentiate among individual appliances in the overlapping

spectrum. Second, PFC signals from appliances located farther

from the smart speaker are subject to attenuation, resulting in

weaker sound. Noise from the environment, other appliances,

and the smart speaker itself also degrade signal quality. In

addition, different types of PFC modules can generate different

signal patterns. Thus, we developed a denoising scheme to

extract PFC features from noisy data, while dynamically

optimizing its configuration to accommodate various sets of

working appliances.

To deal with these issues, we implemented a spectral

subtraction scheme to mitigate the noise emitted by the smart

speaker and external environment (Sec. VI-A1). Optimal varia-

tional mode decomposition (OVMD) is then used to adaptively

optimize the bandwidth of each intrinsic mode function in

decomposing the PFC signal (Sec. VI-A2). To address the

problem of overlap and signal attenuation over long distances,

we propose a data augmentation scheme aimed at increasing

generalizability (Sec. VI-B). Finally, the obtained data is used

to build a multi-label classification model by which to identify

and differentiate among multiple appliances (Sec. VI-C).

We implemented AUDIOSENSE on 28 different electrical

appliances (13 of appliances were the same model.) The pro-

posed system was also tested in a real-world family household.

The contributions are summarized as follows:

• We proposed a novel study to use the sound generated by

power supplies to remotely identify electrical appliances

at a single point based on a current-acoustic model.
• We developed an Optimized Variation Mode Decomposi-

tion scheme to adaptively optimize the bandwidth of each

mode in decomposing PFC features in audio signals.

• We proposed a data augmentation scheme to deal with

the issue of distance attenuation and signal overlap. We

also developed a multi-label classification model using

augmented training data from single-label data to improve

usability by avoiding multi-label collection.

• The system was evaluated by conducting exhaustive

experiments in real-world scenarios. The overall perfor-

mance of AUDIOSENSE achieved mean average precision

of 99.3%.

II. RELATED WORK

A. Electrical Appliance Detection

Close-range sensing: A common idea for detecting elec-

trical appliance is to install distributed sensors on each ap-

pliance [14], [15]. Device-level detection performs straight-

forward sensing results but requires costly installation and

maintenance. Another indirectly sensing technologies such

as visual-based [16],audio-based [3], radiated-emission based

approaches [2] must be used with limited distance and number

of devices. Our approach on contrary can detect multiple

electrical events with a single-point detection.

Non-intrusive load monitoring: Non-intrusive load moni-

toring (NILM) [5] detect electrical appliances based on their
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Fig. 2: Illustration of power factor correction. (a) Current

waveform generated by PFC module. (b) Power spectrum

density of a Dell desktop current.

energy usage patterns. State-of-the-art solutions disaggregate

power consumption data and extract the consumption charac-

teristics from the total energy usage [6], [17], [18]. However,

NILM techniques are unsuccessful in identifying complex

time-varying consumption devices (e.g. desktops, projectors)

and low-power equipments (e.g. CFLs, LEDs). Moreover, they

also fail in distinguishing appliances of the same model. Our

approach utilizes time-invariant feature which makes up the

shortcomings of conventional NILM techniques.

Infrastructure-mediated sensing: Infrastructure-mediated

sensing (IMS) [19] is another single point technology which

detects events that affect house infrastructure including gas [7],

water [8], electricity [9]–[13], and infrastructure vibration [20].

Patel, et al. [9], [10] and Gulati [12], [13] measure EMI

using expensive systems (e.g., USRP and spectrum analyzers.).

NoDE [21] and OutletSpy [22] sense powerline voltage using

an oscilloscope. Our approach also belongs to IMS technolo-

gies but it does not need any additional device unlike the

approaches mentioned above.

B. Acoustic-based Application

Acoustic-based sensing [23] technologies have been widely

employed with the explosive growth of speakers and micro-

phones on commodity devices, ranging from indoor localiza-

tion [24], tracking [25],health sensing [26], and so on. For the

electrical events, there exists techniques by hearing audible

motor sound [3], [27]. However, these approaches may en-

danger users’ privacy and they require a close-range detection.

Our approach mainly focuses on inaudible sound (> 20kHz)

without violating privacy. Moreover, we innovatively propose a

scheme to monitor appliances using sound generated by power

supplies based on a current-acoustic model.

III. BACKGROUND

A. Power Factor Correction Circuit

Power factor correction (PFC) circuits are meant to improve

energy utilization by generating high frequency ripple using

pulse width modulator (PWM) to reduce harmonics as shown

in Fig. 2(a). The PWM switches periodically to fit the sine

wave, generating a current of specific switching frequency.

Fig. 2(b) presents an example of a frequency spike generated

by a Dell desktop. According to IEC61000-3-2 standard [28],

PFC modules must be installed in lighting equipment ex-

ceeding 5W and Class D equipment (e.g., monitors, TVs,

computers, etc.). PFC modules are also used in chargers to
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Fig. 3: Illustration of an electrical network in a house with the

distribution box delivering electricity to sockets.

reduce energy consumption [29]. Therefore, the appliances

containing PFC modules are common in daily life.

B. Powerline Interference

We then describe how PFC circuits in appliances inter-

fere with power networks. A typical indoor electrical supply

network (shown as Fig. 3) contains a distribution box who

delivers electricity in parallel to outlets in different rooms. The

smart speaker and other appliances can be plugged into any

outlet. The relationship between the current in each branch

Ii and the source supply voltage Vs satisfies the following

equation:IrRr + (I0 + I1 + · · · + In + Ir)R = Vs, where

Ii denotes the current of the ith appliance, R denotes the

common resistance of the distribution box, Rr denotes the

self-resistance, and Ir denotes the current of the smart speaker.

Thus, the current of the smart speaker (Ir) can be derived:

Ir =
Vs

R+Rr
− R

R+Rr

n∑
i=1

Ii (1)

From Eq. 1, the current Ir of the smart speaker contains

the current components of other appliances (Sec. IV-B). As

mentioned in Sec. III-A, the PFC circuit generates output

current ripples with special frequency spikes, which makes

it possible to detect appliances by the smart speaker.

C. Acoustic Emission

Then we show how the current Ir causes the power supply

to emit sound. A typical power supply structure contains

inductors and capacitors, who will generate acoustic signal

caused by Magnetostriction and Piezoelectric effects. The

magnetostriction, illustrated in Fig. 4(a), refers to the phe-

nomenon that a magnetic material elongates or contracts in

a magnetic field, most occurs in coils, resulting in the same
and double vibration frequency to the frequency of alternating

current passing through the coil [30], accordingly the sound

will be heard. The Piezoelectric effect [31] is a phenomenon

that a high frequency electrical signal is applied to a capacitor,

producing high frequency mechanical vibrations. The vibrating

capacitor generate acoustic noise as the same frequency of

current (as shown in Fig. 4(b)). This noise mainly occurs in

capacitors and crystal oscillator.

Remarks. To summarize, inductors and capacitors both

emit sounds and a frequency corresponding to the frequency

of the current passing through the circuit. Fig. 4 presents a

spectrogram of the sound emitted the same frequency as the

Alternating 
Current

Magnetic Core

Coil

(a) Magnetostriction and acoustic emission of an inductor

Voltage

Capacitor

(b) Piezelectric effect and acoustic emission of a capacitor

Fig. 4: Illustration of Magnetostriction and Piezoelectric effect;

and the spectrogram of the acoustic emission.

passing current of 20kHz. This makes it possible to convert

specific components of current channel to acoustic channel,

which is the main principle of AUDIOSENSE.

IV. FEASIBILITY STUDY

In this part, we focused on answering two questions: i) Can

PFC signals be used as a fingerprint to identify electrical appli-

ances? ii) Does the acoustic signal contain corresponding PFC

current components, and can they be detected remotely? In this

section, we used an ACS712 current sensor of 160kHz to

measure the current of 25 appliances of 15 models connected

in series over 10 days.

A. PFC Signal as Fingerprint

Uniqueness. We first assessed whether the PFC signals

of the appliances were unique. The dataset was divided

into a subset of different models and another subset of the

same model. We utilized t-SNE to visualize the clustering

relationships among data points. Fig. 5(a) plots the t-SNE

between 15 models. The figure reveals obvious variations

across different models. Fig. 5(b) presents the t-SNE of the

same model, including 5 lights, 4 desktop computers, and 4
monitors. Note that inter-class variation far exceeded intra-

class variation. Nonetheless, we still observed differences in

PFC, due to variations in the manufacturing processes. These

results reveal that the PFC frequencies of both different model

and the same model of appliances are distinguishable.

Stability. We then assessed whether the PFC signals were

stable over time. Fig. 6 presents variations in the CDF of PFC

center frequency over various durations (1day,2days,3days).

Overall, the variation in PFC signal is within 40Hz which

confirms that the PFC signal is stable. To summarize, the PFC

signal was unique to each appliance and stable over time,

thereby confirming that it could be used as a fingerprint in

identifying electrical appliances.

B. Current-Acoustic Model

The PFC signal can be attenuated through the powerline

due to line resistance. In this section, we verify whether the

sound emitted corresponds to the branch current and whether

the effects can be detected remotely.
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(a) Different model (b) Same Model

Fig. 5: The t-SNE for series current of different models and

same models, respectively.

Distance attenuation. Line resistance increases with dis-

tance with a corresponding decrease in the amplitude of the

PFC signal. We first assessed whether the PFC signal is

able to activate the audio signals from a remote location.

We conducted experiments by adjusting line length on the

transmitter (from 1.8m to 18m). Fig. 7 presents the SNR of the

audio signal from 3 appliances. Interestingly, the SNR of the

projector presented a slight improvement due to compensation

for voltage loss [32]. The SNR of the other two different lights

decreased, whose dropping slope was roughly −0.13dB/m
by a linear regression. It means that the maximum distances

approximately 53m, which can meet the requirements for

covering a common family.

Consistency. We then assessed whether PFC signals can

be transmitted to a smart speaker and whether doing so would

activate the supplies to emit sound. A Dell desktop was used as

a transmitter and a Tmall smart speaker power supply was used

as the receiver in another room. Note that an electret condenser

microphone 2 was used to sample the sound at 192kHz.

Fig. 8 presents the same frequency spike at 64.385kHz of

the spectrum of the current passing through the smart speaker

and audio signal. These results demonstrate the consistency

between the audio signal and current.

Remarks. AUDIOSENSE leverages the PFC feature in emit-

ted audio signal of power supply for appliance identification.

It is meant to convert the current/voltage channel into a sound

channel, which can be implemented on any device with a built-

in microphone without additional equipment. Moreover, AU-

DIOSENSE extends the function to be applied to a wider range

of equipment for different types of PFC modules (Sec. V).

V. PRELIMINARY ANALYSIS OF AUDIO SIGNAL

The audio signal is strongly correlated to the PFC compo-

nent. In this section, we highlight the analysis of the received

audio signal with various PFC components.

Impact of Type of Devices. Typically, PFC modules take

different conduction modes in different devices according to

different power levels [33]. As for high-power appliances

(> 300W ), it usually performs a constant frequency. In

comparison, PFC modules in low-power appliances perform

changing frequency, resulting in a wide bandwidth. Fig. 9

presents the audio signal emitted by the power supply of

2Both electret condenser and MEMS microphones can effectively reduce
electromagnetic interference to ensure the picked up signal is sound, while
dynamic microphones will suffer EMI.

Fig. 6: The CDF of PFC cen-

ter frequency variation.

Fig. 7: SNR of the sound of

three models under distance

attenuation.

(a) Parallel Current (b) Audio

Fig. 8: Spectrum of the parallel current and the audio signal

a projector (330W ) and phone charger (65W ) while under

working. The results revealed the projector produced a narrow-

band frequency whereas the charger produced a fluctuating

frequency over a wide band. Note that even in cases where the

frequency changes often, it remained a periodic signal with a

constant center frequency.

Impact of Working States. An increase in load prompts an

increase in current to provide sufficient power. The role of a

PFC module is to fit a sinusoidal current wave in accordance

with the current. Fig. 10 presents the PFC component in the

acoustic signal from an induction cooker operating under vari-

ous power levels. Clearly, the frequency of the PFC component

varied as a function of power, thereby demonstrating that the

PFC component can be used to identify the working states.

Impact of Charging States. Charging is a common issue

with many devices, and monitoring the charging state is

important. The processing involved in charging has three

modes according to battery level: pre-charge mode (battery

level < 20%), constant current charging mode (20%− 80%),

and constant voltage charging mode (> 80%) [34]. Fig. 11

presents the acoustic signal received from a phone charger

operating under various battery levels. We found that the

battery level influenced the PFC signal, thereby confirming

that AUDIOSENSE could potentially be used to detect the

charging state of devices.

Impact of Aliased Sampling. In reality, the sampling

rate of the microphone can be lower than the Nyquist rate

(fs > 2f ). When sampling a high-frequency signal at the

sub-Nyquist rate, the frequency component is aliased or folded

back, as the following:

fa =

{
(N + 1)fs − f fs/2 < f −Nfs < fs

f −Nfs 0 ≤ f −Nfs ≤ fs/2

where fa refers to the aliased frequency, f is the original

frequency, fs is the sampling frequency and N = 0, 1, 2, · · · .

Fig. 12 shows the audio signals obtained by sampling at

different sampling rates. The original frequency was 69kHz
sampled at 192kHz (shown as Fig. 12(a)). When the sampling

rate was reduced to 96kHz and 48kHz, the correspond-
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(a) Background (b) Projector (c) Phone charger

Fig. 9: Audio signal of power supply that the projector

performs constant frequency (69kHz) and the phone

charger performs changing frequency (59kHz-69kHz).

(a) Low power (b) Medium power (c) High power
Fig. 10: Audio signal of power supply when an induction

cooker works in different power.

(a) Battery< 20% (b) Battery 20%-80% (c) Battery> 80%
Fig. 11: Audio signal of power supply from a phone

charger as a function of battery level.

(a) fs = 192k (b) fs = 96k (c) fs = 48k
Fig. 12: Audio signal of power supply when sampled at

different sampling rates.

ing frequencies dropped to 27kHz (Fig. 12(b)) and 21kHz
(Fig. 12(c)), respectively. This means that existing COTS smart

speakers are able to sample PFC features in audio signals.

VI. SYSTEM DESIGN

In this work We proposed AUDIOSENSE, which leverages

the acoustic signals generated by power supply to detect

electrical appliances. Fig. 14 illustrates the architecture of the

proposed AUDIOSENSE system, which involves a single-label
registration phase and a multi-label classification phase. In

single-label registration phase, AUDIOSENSE begins collect-

ing 2-min data when an appliance is firstly accessed. The col-

lected signal then undergoes spectral subtraction (Sec. VI-A1)

to boost the SNR, Optimized Variational Mode Decomposition

(OVMD) and periodicity detection (Sec. VI-A2) to extract PFC

feature. The signal then is segmented into multiple parts and

applied STFT to obtain spectrograms. A data augmentation

scheme (Sec. VI-B) is applied to improve generalizability.

Finally, a CNN model is trained a classifier for multi-label

classification(Sec. VI-C). Multi-label classification involves

classifying multi-label data using augmented data from single-

label data. It undergoes the same process as the registration

phase. AUDIOSENSE captures the sound of the power supply

and predict the result of which appliance is working.

A. Preprocessing

The collected audio signals comprise the background noise

and the sound produced by external PFC signals. The clean

extraction of the band is crucial to subsequent feature extrac-

tion and classification. The preprocessing is presented below.

1) Spectral subtraction: Our aim is to boost SNR by weak-

ening the background noise and extracting the band includes

the PFC component. The signal received by the microphone

Yr (Fig. 13(b)) can be denoted as follows:

Yr = Spfc(ω0) + Ybg

where Spfc(ω0) refers to the external PFC signal and ω0 refers

to the central frequency of PFC component. Ybg denotes the

background noise. Such background noise is time invariant

which obeys a specific distribution. This allows using spectral

subtraction to obtain an enhanced set of PFC component

Ŝpfc(ω0) as follows:

Ŝpfc(ω0) = F−1[[|Yr| − E[|Ybg|]]ejθ] = Spfc(ω0) + ε

where E[|Ybg|] refer to an estimate of the background noise

spectra, F−1 is the IFFT, θ is the original phase, and ε is

estimation error. Fig. 13(c) presents the signal under SNR

boosting. Note that spectral subtraction can only weaken

the noise but cannot completely remove it. Thus, we need

to further extract the band of the PFC component without

interference from extraneous noise.
2) Optimized Variational Mode Decomposition.: Even af-

ter the spectral subtraction phase, weakened background

noise still exists. While the center frequency of the PFC

signal remains unchanged, Variational Mode Decomposition

(VMD) [35] is used to decompose the audio signal into several

band components, referred to as Intrinsic Mode Functions

(IMFs), from which we can extract the PFC component.
Conventional VMD. When dealing with a 1D signal

Ŝpfc(ω0), VMD separates it into k narrow band signals, which

are denoted by uk, with different values for the estimated

central frequency ωk. The analytic signal of each uk is

shifted from the pass band to the base band whereupon the

penalty term is computed. The objective of optimization in

the frequency domain can be represented as follows:

min
uk(ω0)

{||
∑
k

uk(ω0)−Ŝpfc(ω0)||22+α
∑
k

||jωuk(ω0−ωk)||22}
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(a) Background noise (b) Raw data (c) Spectral subtrac-
tion

(d) Traditional VMD
without periodicity de-
tection

(e) Traditional VMD
with periodicity detec-
tion

(f) Optimized VMD with
periodicity detection

Fig. 13: Spectrograms of the acoustic emission from a power supply during the preprocessing pipeline. (a) Background noise

containing noise from the sound card (60kHz-90kHz); (b) Raw data obtained from two lights and a Lenovo laptop computer

during working; (c) Background noise weakened via spectral subtraction (d) Conventional VMD without periodicity detection,

containing a random noise band at 60kHz-90kHz (e) Conventional VMD with periodicity detection, appearing broadband with

noise at 25khz-32khz. (f) Optimized VMD with periodicity detection, appearing the PFC frequency are correctly distinguished.

Note that in the frequency domain, ||jωuk(ω0−ωk)||22 is equal

to ||j(ω0 −ωk)uk(ω0)||22. To guarantee the fidelity of decom-

position, the constrained variational model corresponding to

the decomposition process of the response signal Ŝpfc(ω) is

as follows:

min
uk(ω0)

{||
∑
k

uk(ω0)− Ŝpfc(ω0)||22+

α
∑
k

||j(ω0 − ωk)uk(ω0)||22}

s.t.
∑
k

uk(ω0) = Ŝpfc(ω0)

The optimal solution can be obtained using a Lagrange mul-

tiplier, after which the ADMM algorithm is used to find the

saddle point. Please refer to [35] for more details.

Parameter optimization. The VMD algorithm decomposes

the original signal based on pre-defined parameters (i.e. k and

α ). For parameter k, a high value can result in spurious

modes (consisting of noise content) or mode splitting (the

same component shared by several IMFs). A small value for

parameter k can lead to mode loss or mode mixing. The

choice of parameter α is equally important. In our experiments,

the bandwidth varied from device to device, such that a

set of universal parameters would not restore the original

PFC waveform well. Thus, we developed a bandwidth-based

optimization scheme to facilitate component extraction.

Take as an example a decomposed narrow band signal

uk(ω), in which the bandwidth is equivalent to the width of a

rectangle of the power spectrum of uk(ω), and whose height

is the amplitude at the center of power spectrum. Thus, the

bandwidth (bw) can be derived as follows

Δ2
f =

∫ ∞

0

(ω − ωk)
2 |ûk(ω)|2∫∞

0
|ûk(ω)|2dω

dω

bwk = 2Δf

where ûk(ω) denotes the amplitude spectrum of uk(ω) and

bwk denotes the bandwidth of decomposed signal uk(ω). The

total bandwidth of the decomposed signal is indicated as

BW =
∑k

k=1 bwk. Theoretically, the degree to which the

decomposed mode fits the real signal is inversely proportional

to the total BW . Inappropriate values for k or α would skew

the value of BW . We therefore initialized the parameters using

two sets: k within the range of [10, 40] and α within the range

of [10000, 100000], and adjust the parameters. We chose the

combination of k and α that can achieve the smallest BW as

the optimal solution.

Periodicity detection.The signals were decomposed into

several IMFs; however, we focused exclusively on the sound

produced by the PFC feature. Note that the PFC component

is periodic and noise is non-periodic. Here, we managed to

extract the external PFC signal from the IMFs. For each IMF,

we first computed the upper envelope, and then derived the

corresponding auto-correlation coefficients. We segmented the

IMF into multiple parts in which the start point is where

the peak of the auto-correlation coefficients. The duration of

each part should exceed the fundamental period, which we

empirically set at 0.05s. We computed the Pearson Correlation

Coefficient for pairs of segments and utilized a threshold to

determine which IMF is periodic. Fig. 13(f) compares our

best results obtained using OVMD (w/ periodicity detection)

against conventional VMD (w/o periodicity detection). Over-

all, the characteristic frequency band was effectively extracted.

B. Data Augmentation

Our objective was to enable the identification of multiple

appliance combinations when the user registers only once.

To ensure the extraction of robust features and expand the

generalizability, the data augmentation is implemented:

Augmentation against distance attenuation. Moving an

appliance to another location in the house could alter the signal

amplitude due to the effects of signal attenuation as a function

of distance. Thus, we augmented the spectrum of each signal

part by randomly amplifying or reducing the amplitude by a

given multiple. The SNR can drop 6.5dB at a distance of

50m, means the range of amplitude range is within a range of

[0.47, 2.11]. Data augmentation within this range can extract
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Fig. 14: The system overview of AU-
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Fig. 15: The prototype of

AUDIOSENSE system.

TABLE I: 28 Appliances with 34 states are employed

in the experiments. The corresponding information is

listed.

Appliance Company #States #Same #Different #Total num #Total states

Light Xiaomi,PHILIPS,etc. 1 5 2 7 7

Monitor Dell, PHILIPS,etc. 1 4 1 5 5

Desktop Dell, HP, etc. 1 4 2 6 6

Laptop Hp, Lenovo 1 0 2 2 2

Projector Canon, Sony 1 0 2 2 2

Phone charger Huawei, Xiaomi 3 0 2 2 6

Induction cooker Supor 3 0 1 1 3

TV Skyworth 1 0 1 1 1

UPS SANTAK 1 0 1 1 1

Accumulator Chilwee 1 0 1 1 1

features irrelevant with the amplitude, so as to combat the

distance attenuation and appliance placement.

Augmentation against overlap. When multiple electrical

appliances are operating at the same time, the frequency bands

tend to overlap. Thus, we augment the data by taking addition

with random combinations of different classes to enable the

extraction of features from overlapping bands. The label of

an n-categories data is an n-dimensional binary vector. Note

that each appliance operates independently; therefore, data

augmentation assumes that the probability of any appliance

appearing is equal. The augmented data is then fed into the

CNN model for feature extraction.

C. Multi-label Classification

After preprocessing and augmentation, we obtain a large

multi-label dataset augmented with single-label data. Each

data sample is processed by STFT into a 2D-spectrogram. All

spectrograms X = { �x1, · · · , �xn}, �xi ∈ X are associated with

a ground truth label �yi, and we seek the classification function
�f : X → Y that minimizes loss function using N training

sample-label pairs (�xi, �yi), i = 1, 2, · · · , N . In the label layer,

we encode labels as binary vectors �y ∈ {0, 1}L = Y (with

L labels). Since each appliance is independent, the classifier

treats each label independently as an L binary classification.

Moreover, the probability of any given appliance appearing

in the signal is equal; therefore, we employed class-averaged

binary cross entropy (BCE) loss as our loss function:

(�y, �f) =
1

L

L∑
i=1

−yi log fi − (1− yi) log(1− fi)

In our feature extraction model, we assessed several convo-

lutional neural networks (CNNs) to determine their ability

to account for local similarities in the spectrogram during

a given time period. We selected the ResNet-18 model [36]

as the CNN model. Our ultimate objective was multi-label

classification; therefore, the outputs of the network were

the activations of L independent Sigmoid functions, where

L indicates the size of the class vocabulary. We employed

the Adam optimizer with a scheduled learning rate to train

the model. The testing process involved passing the multi-

label data through the preprocessing block employed in the

registration phase before feeding it into the trained model.

The output is a binary vector �y with L labels, indicating which

appliance is working at that time.

VII. EVALUATION

A. Experiment Setup

Prototype: Due to intellectual property issues, we were

unable to obtain microphone sampling information by COTS

smart speaker devices. We therefore constructed a prototype to

verify the efficacy of AUDIOSENSE. A schematic illustration

is shown as Fig. 15. We plugged a smart speaker into an

outlet to receive the PFC signals from remote outlets, while

continuously sampling the acoustic signals received by a

microphone. The acoustic signals were analyzed further.

Dataset: We collected data in real-world from 28 appliances

with 34 states over a period of 10 days, sampled at 192kHz,

96kHz, 48kHz, and 44.1kHz, respectively. The dataset was

divided into a single-label dataset (for training and testing)

and a multi-label dataset (only for testing). Table. I lists

the appliances used in the experiments. For the multi-label

dataset, we representatively select 10 appliances (12 states)

and randomly combined them.

Performance metrics. Evaluating performance involving

multi-label learning is more complicated. To this end, we

employed two common metrics to access multi-label learn-

ing [37], including average precision (AP) to measure the

performance on each class, and mean average precision (mAP)

to measure all classes. Specifically, AP can be computed as

follows:

AP (h) =
1

L

L∑
i=1

1

|Y| ·
|Pi|

rankh(�xi, y)
, where

Pi = {y′|rankh(�xi, y
′) ≤ rankh(�xi, y), y

′ ∈ Y}
Where, h returns the predicted labels of �xi; rankh(�xi, y)
returns the rank of y derived from the confidence for y to

occur in a predicted label of �xi. AP is used to determine the

average fraction of predicted labels ranked above a particular

label y ∈ Y . mAP is the mean of average score of all labels.

Essentially, the values of AP and mAP, are proportional to the

performance of the classifier.

B. Overall performance

Single-label classification We evaluated the overall per-

formance of the proposed system using 28 electrical appli-

ances with 34 states. Fig. 16(a) presents the confusion matrix

obtained using the single-label dataset, resulting in overall

accuracy of 99.5%. The results demonstrate that AUDIOSENSE

can work well on single-label classification.
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(a) Single label (b) Multi label

Fig. 16: Overall classification performance on sin-

gle label dataset and multi-label dataset.

(a) Number of appliance (b) Distance attenuation (c) Environment interference

Fig. 17: System performance as a function of number of appliances, distance

and environmental interference.

Fig. 18: Comparison of

power attenuation between

audio and magnetic signal.

Fig. 19: The spectrogram of

a laptop when a browser is

opening and closing.

Multi-label classification. We evaluated the overall per-

formance on multi-label classification. 10 appliances with 12
states are selected at random to form combinations. Among the

appliances, 3 lights and 3 dell desktops are of the same model,

and a phone charger has 3 states. As shown in Fig. 16(b),

the AP of all classes exceeded 99% which demonstrated that

AUDIOSENSE achieves good performance.

C. Robustness

Impact of the number of appliances. We first examined

the impact of multiple electrical appliances superimposed on

the multi-label classification. We employed a 0-1 exact match

rate as the metric to eliminate interference of the number of

categories. As shown in Fig. 17(a) the complete scheme (w/

ovmd) produced the best results (blue bar), resulting in a match

rate of more than 87%. When OVMD was not applied, the

exact match rate decreased sharply as the number increased

for the reason that OVMD can effectively extract the PFC

feature. The match rate dropped to just 65% when 9 appliances

were included. When data augmentation was not applied, the

exact match rate when using one appliance reached 94.3%;

however, matching rate perform worse when multiple devices

worked simultaneously because it cannot learn the multi-

label classifier from only single-label data. Therefore, the data

augmentation is significant to our system.

Impact of distance. We also examined the impact of

transmission distance on mAP values. As shown in Fig. 17(b)

shows that all of the mAP values obtained using data aug-

mentation exceeded 98%, regardless of distance (from 1.8m to

18m). When data augmentation was not applied, mAP dropped

to around 95%. These results indicate that AUDIOSENSE is

robust to transmission distance.

Impact of environmental interference. Finally, we ex-

amined the impact of interference in different environments

including quiet, talking, and playing music. Data was collected

under various sampling rates. As shown in Fig. 17(c), in a quiet

environment, mAP decreased with the sampling rate; however,

all mAP values exceeded 93%. In situations where someone

was talking or playing music, the mAP values dropped slightly

in terms of sampling rate: 192kHz (2.7%), 96kHz (3%),

48kHz (5.8%), and 44.1kHz (6%). Lower sampling rates

had a more profound effect in noisy environments. Higher

sampling rates resulted in higher performance; All the mAPs

values exceeded 85% regardless of the sampling rates and

surrounding environments. Note that the sampling rate is in-

creasing to support Hi-Res recording and playback, indicating

the performance on smart speaker should improve in the

future.

VIII. DISCUSSION AND CONCLUSION

In this work, we proposed AUDIOSENSE, a novel approach

to leverage current-acoustic channel to achieve single point

appliances detection with a microphone. It is potentially to be

updated on COTS smart speakers for more applications.

A. Acoustic vs. Magnetic Sensing

Moreover, acoustic solutions have certain advantages over

traditional electromagnetic solutions:

Propagation distance. As signals propagate outward, the

attenuation rate of acoustic signals is lower than that of

magnetic field. Acoustic signals decays linearly [38] and the

magnetic strength decays cubically [39]. Thus, acoustic signals

can be detected at a greater distance. Fig. 18 presents the

power attenuation of two signals against detection distance

(0− 8mm), the magnetic field strength decays much faster.

Magnetic shielding. In many situations, magnetic signals

are regarded as a form of pollution. Electromagnetic inter-

ference (EMI) disrupts the operation of electronic equipment,

often leading to malfunctions and faulty reading. Thus, most

electronic equipment is equipped with magnetic shielding,

such as a Faraday cage. High-frequency inaudible acoustic

noise is largely disregarded, with the result that the transmis-

sion of audio signals is unimpeded.

No additional hardware. The collection of magnetic field

data depends on specialty items, such as Hall sensors. By con-

trast, every smart device comes equipped with a microphone.

Moreover, the sampling rate of built-in magnetometer in

mobile devices is too low(e.g., 50Hz). The rate of microphone

is far higher (e.g., ≥ 48kHz). A shift to devices of Hi-Fi is

pushing sampling rates even higher. The microphone on the
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LG V60 has ability to record audio at 192kHz [40], which

indicates AUDIOSENSE could be widely used in the future.

B. Extended Applications

AUDIOSENSE also has other potential applications. First,

PFC signals are a form of EMI occurring at frequencies

of 40-150kHz. AUDIOSENSE can detect EMI in current, as

long as the bandwidth is below 96kHz. Second, we observed

variations in acoustic signals when the programs are launched

(e.g., Chrome), as shown in Fig. 19. Specifically, [22] used this

phenomenon to identify which application was launched when

using a desktop. It means AUDIOSENSE can also perform app-

level monitoring in future work using audio signal.
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