

M³Cam: Lightweight Super-Resolution via Multi-Modal Optical Flow for Mobile Cameras

Yu Lu^{†&}, Dian Ding^{†&}, Hao Pan^{‡*}, Yongjian Fu[♦], Liyun Zhang[†], Feitong Tan[₹], Ran Wang[†], Yi-Chao Chen[†], Guangtao Xue[†], Ju Ren[€]

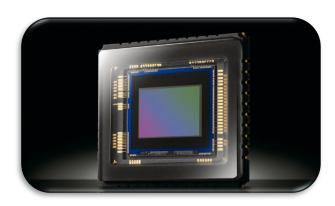
Shanghai Jiao Tong University[†] Microsoft Research Asia[‡] Central South University[♦] Simon Fraser University[₹] Tsinghua University[€]

High-resolution photos improve the user's photographic experience

Mobile Photography

Smartphone' Camera Boost Resolution through Hardware Upgrades

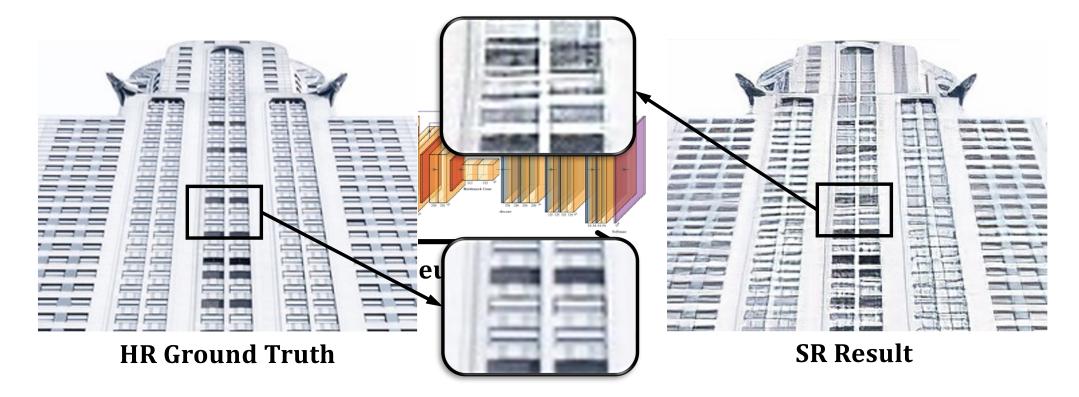
The Moto X30 Pro is the first 200MP phone launched on 8/11/2022, while most flagships still use 50MP sensors today.



CMOS sensors face limited pixel account due to area constraints

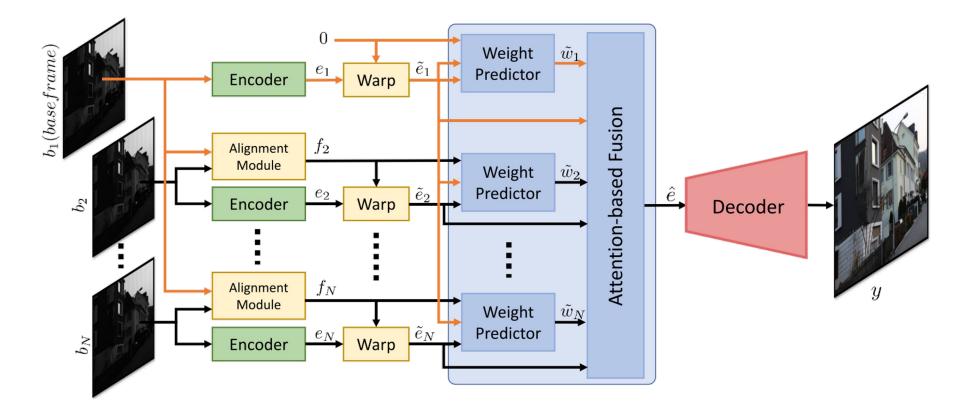
Periscope lenses extend our view without increasing resolution

Single-Frame Super-Resolution (SFSR) with Neural Network



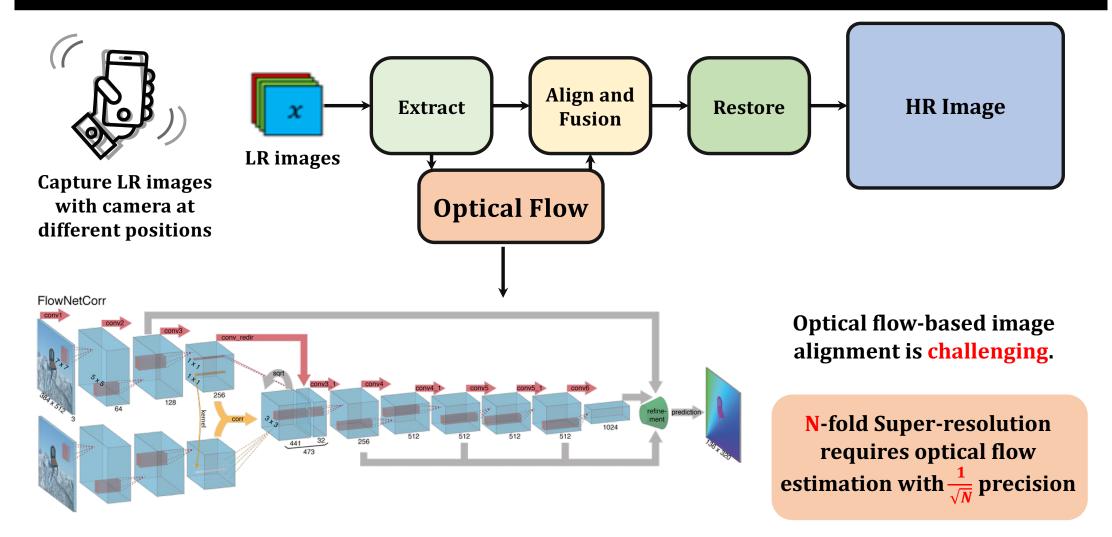
SFSR leverages learned experiences to enhance details in up-sampled images, but may encounter artifacts or excessive smoothing due to insufficient information.

Multi-frame Super-resolution (MFSR)



MFSR yields better results than SFSR, because it can restore more information about the real scene through multiple sampling.

MFSR on mobile devices and its challenges



Low-accuracy optical flow impacts the quality of MFSR

Optical Flow Maps with Varying Error Levels

Existing Optical Flow Models

How to Design Extremely Accurate and Lightweight Optical Flow Modules for Mobile 16-fold Super-Resolution Imaging?

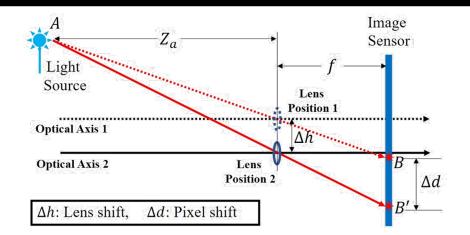
HR image SR results generated using the above optical flow

Accuracy of optical flow significantly affects super-resolution imaging results Parameter (Mb)

RAFT (SOTA) achieves ~0.5-pixel error, supporting 4-flod super-resolution

> **16-flod** Super-Resolution on mobile needs <0.25-pixel error

Intuition: Enhance optical flow accuracy with an auxiliary modality



Lens motion yields optical flow results that negatively correlate with depth information :

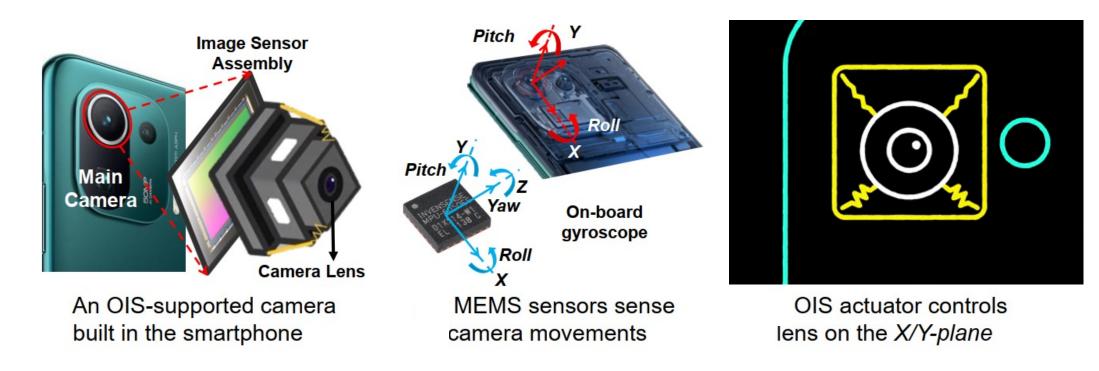
However, steady and regular camera movement is nearly **impossible** for common users.

information

Frame 1

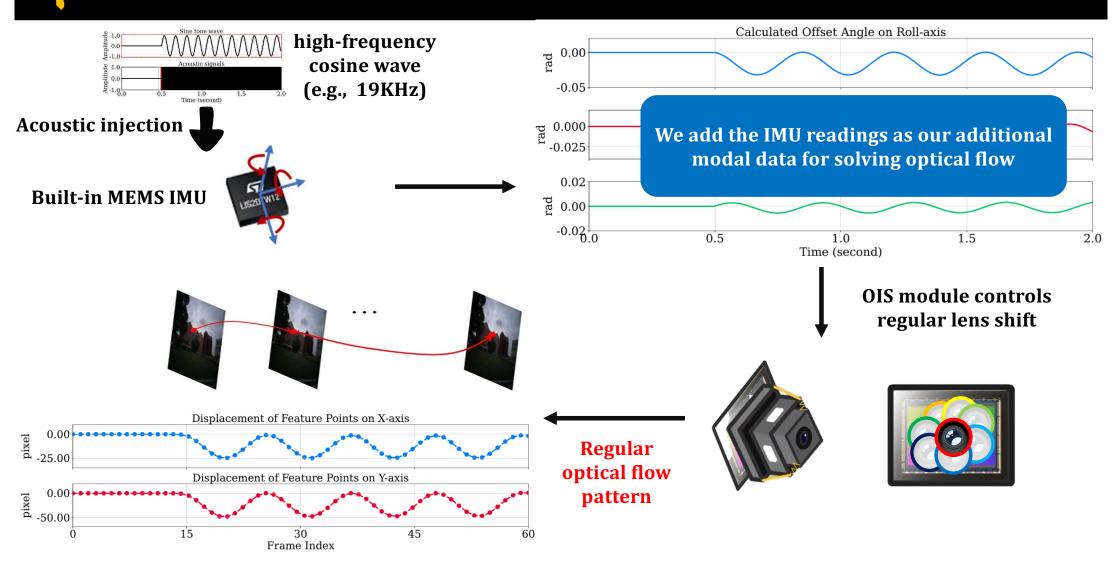
a lightweight NN model

OIS module can control lens motion with the phone stationary

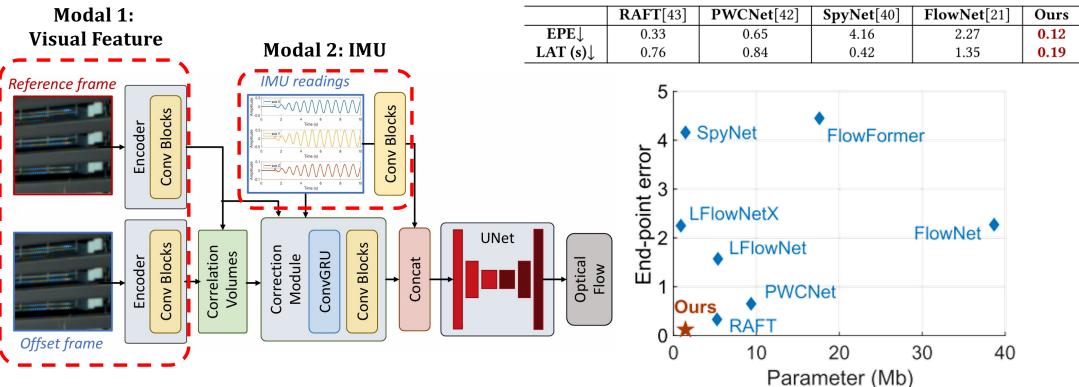


Controlling the OIS module enables steady and regular lens movement for handheld shooting by common users.

Additional Modality : Controlled IMU readings for lens movement



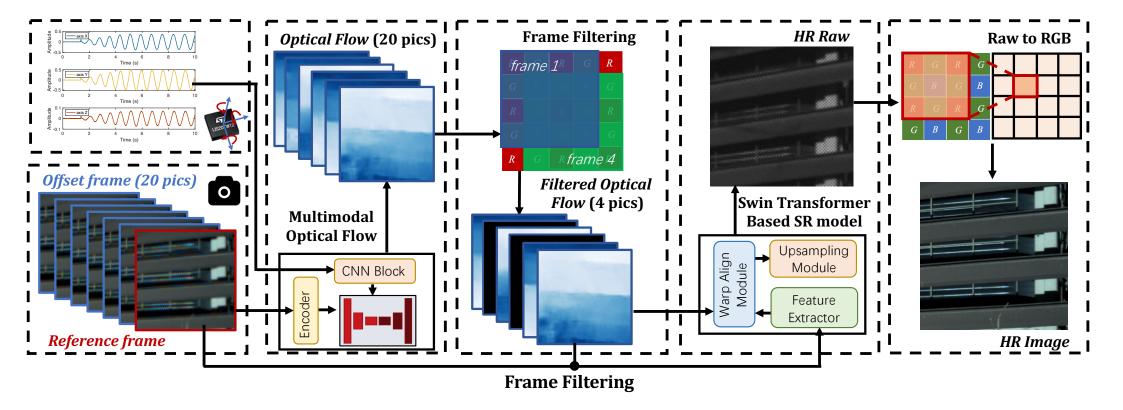
Our proposed multi-modal optical flow estimation module



Multi-modal optical flow estimation model

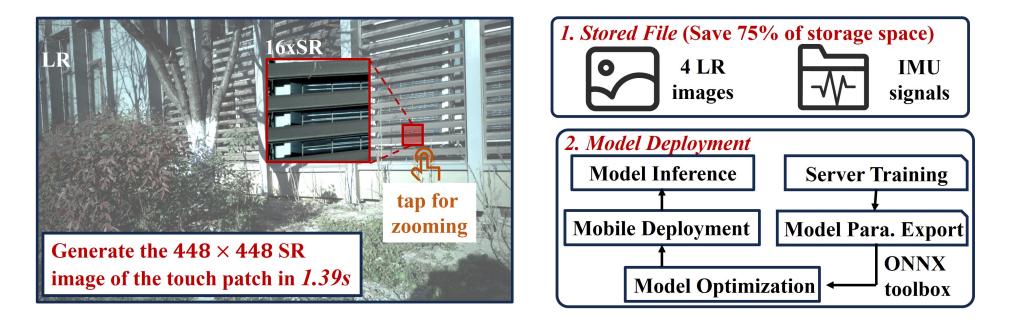
Our model achieves the minimal computational overhead and best performance (<0.25 pixel)!

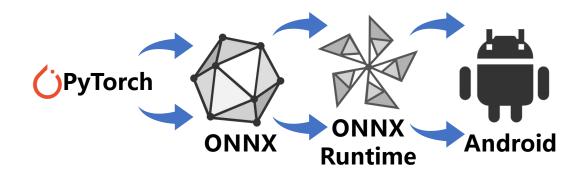
$M^{3}Cam$ system : a lightweight mobile $16 \times$ SR system



Overview of our designed M3Cam, a lightweight mobile 16×SR system begin with multi-frame images based on acoustic injection

Mobile Deployment and "How to use M3Cam"

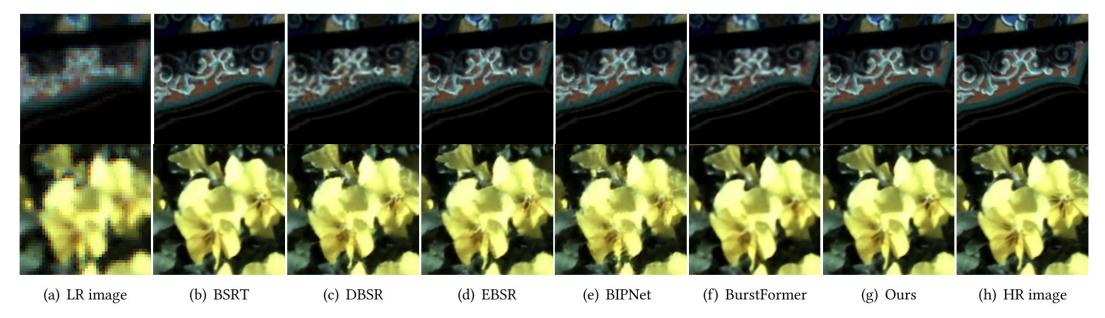




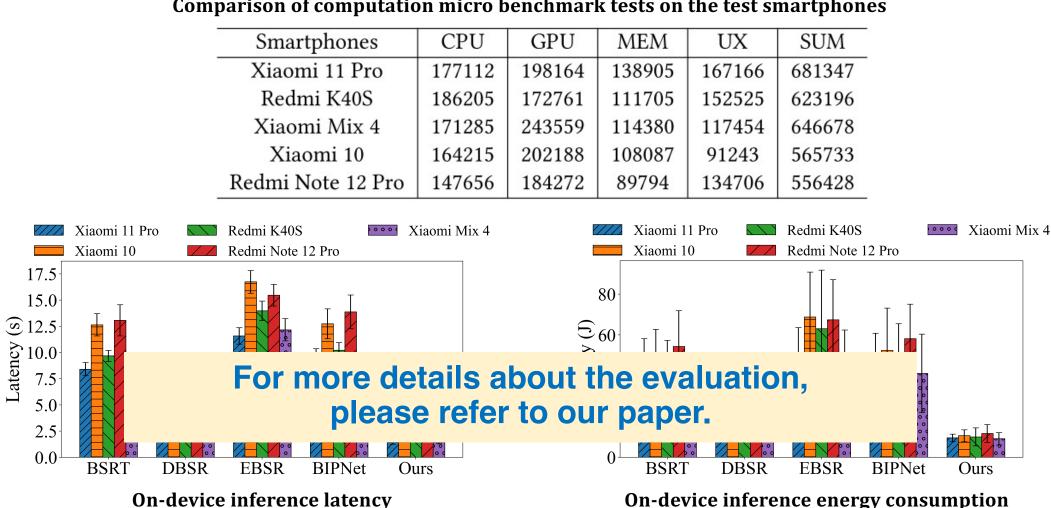
Evaluation : Comparative analysis for various RAW-format MFSR systems

Metrics	PSNR↑	SSIM↑	LPIPS↓	Para. # (10 ⁶)↓	Latency (s) \downarrow	RAM (MB)↓	onnx. (MB)↓	Frame #↓	Power (J)↓
BSRT [31]	35.89	0.8812	0.0847	7.06	8.41	721.3	27.1	12	39.535
DBSR [4]	35.23	0.8876	0.0989	12.94	3.96	827.2	49.3	14	22.703
EBSR [32]	34.96	0.8629	0.0945	9.52	11.58	736	36.7	8	51.068
BIPNet [10]	35.26	0.8603	0.0934	6.67	9.23	753.7	25.6	8	43.337
Burstormer[11]	34.88	0.8610	0.1248	2.49	N/A	N/A	N/A	8	N/A
Ours	36.49	0.8917	0.0687	2.17	1.39	479.4	9.33	<u> </u>	9.495

End-to-end imaging visualization comparison



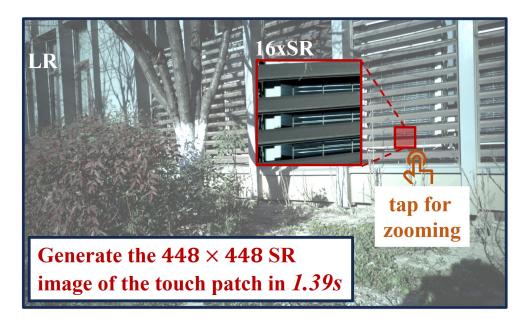
Evaluation : the on-device SR inference performance

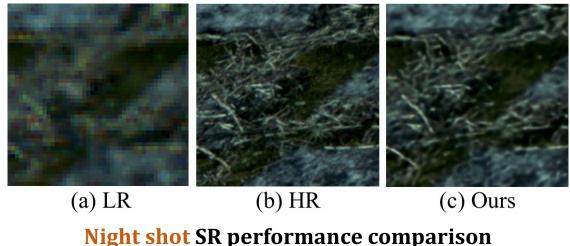


Comparison of computation micro benchmark tests on the test smartphones

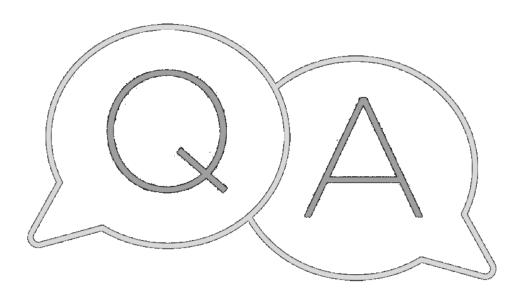
Conclusion

- We propose a novel multi-modal optical flow estimation module.
- We propose M³Cam, a lightweight SR network based on the Swin Transformer.
- We implement a prototype of M³Cam and deploy it on various Android smartphones.
- M³Cam outperforms other systems in both image quality and inference overhead.

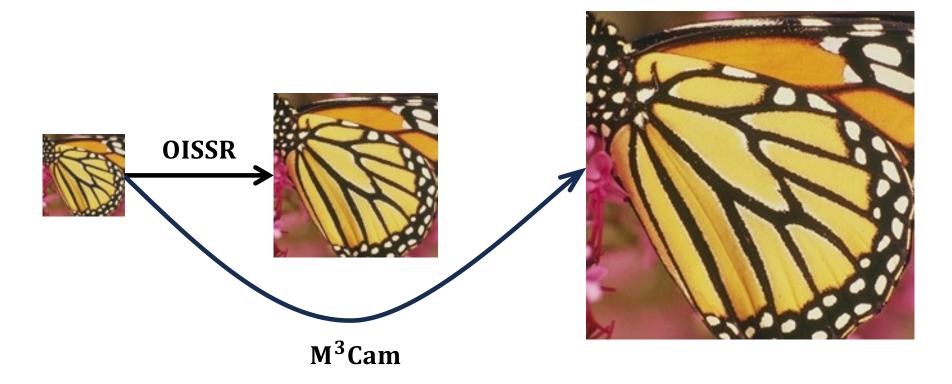




Thanks for listening!

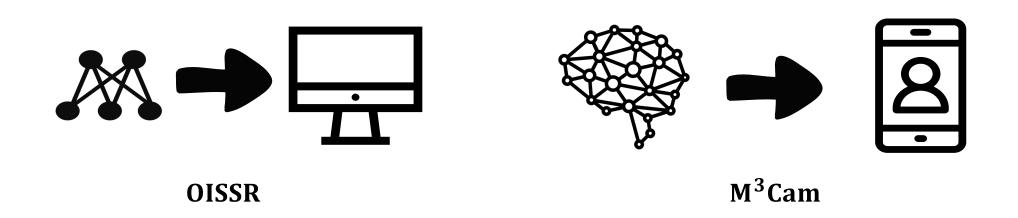


M³Cam vs OISSR



 OISSR achieves high-quality results (PSNR > 35) only in 4x up-sampling (2x length and 2x width), while M3CAM delivers high-quality results in 16x up-sampling tasks.

M³Cam vs OISSR



• OISSR lacks validation for real-time deployment on mobile devices, whereas M3CAM successfully implements this capability.