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ABSTRACT
Network measurement remains a missing piece in today’s software

packet processing platforms. Sketches provide a promising building

block for filling this void by monitoring every packet with fixed-size

memory and bounded errors. However, our analysis shows that

existing sketch-based measurement solutions suffer from severe

performance drops under high traffic load. Although sketches

are efficiently designed, applying them in network measurement

inevitably incurs heavy computational overhead.

We present SketchVisor, a robust network measurement frame-

work for software packet processing. It augments sketch-based

measurement in the data plane with a fast path, which is activated

under high traffic load to provide high-performance local measure-

ment with slight accuracy degradations. It further recovers accurate

network-wide measurement results via compressive sensing. We

have built a SketchVisor prototype on top of Open vSwitch. Ex-

tensive testbed experiments show that SketchVisor achieves high

throughput and high accuracy for a wide range of network mea-

surement tasks and microbenchmarks.
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1 INTRODUCTION
Software packet processing is an important pillar of modern data

center networks. It emphasizes programmability and extensibility,

thereby supporting new network management features. Extensive

work has been undertaken to improve software-based packet for-

warding performance [16, 45]. Recent trends on network function

virtualization (NFV) extend traditional layer 2-3 packet processing

to more sophisticated middlebox functionalities via software-based
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control decisions [25]. Software switches, such as Open vSwitch

[41], Microsoft Hyper-V Virtual Switch [32], and Cisco Nexus 1000V

Virtual Switch [10], are now common building blocks of virtualiza-

tion software and widely deployed in modern public and private

clouds.

Network measurement is crucial to managing software packet

processing platforms. Its goal is to collect essential network traffic

statistics (e.g., heavy hitters, traffic anomalies, flow distribution,

and traffic entropy) to help network operators make better network

management decisions on traffic engineering, performance diag-

nosis, and attack prevention. Although network measurement has

been well studied in IP networks, today’s software switches, sur-

prisingly, only support limited network measurement. For example,

Open vSwitch only provides sampling-based measurement tools

based on NetFlow [40] and sFlow [49], yet packet sampling inher-

ently suffers from low measurement accuracy and achieves only

coarse-grained measurement [28, 56]. While we can improve mea-

surement accuracy by increasing the sampling rate or even record-

ing all traffic (e.g., SPAN [51]), the resource usage will dramatically

increase and pose scalability issues in high-speed networks.

Sketches provide an alternative to achieving fine-grained mea-

surement. Unlike packet sampling, sketches are compact data

structures that can summarize traffic statistics of all packets with

fixed-size memory, while incurring only bounded errors. Many

sketch-based solutions have been proposed in the literature to

address different trade-offs between measurement accuracy and

resource usage [13, 19, 22, 35, 46]. Although such proposals are

not widely deployed in production IP networks due to the need

of re-engineering switching ASIC, the programmability nature of

software switches makes the deployment of sketch-based measure-

ment in software packet processing viable. With the theoretical

guarantees of resource usage of sketches, it is expected that sketch-

based measurement incurs low overhead to the software packet

processing pipeline.

Unfortunately, contrary to conventional wisdom, our analysis

(§2.2) shows that existing representative sketch-based solutions in

software actually consume substantial CPU resources, which could

otherwise be used by other co-located applications (e.g., virtual ma-

chines or containers in virtualized environments). The root cause

is that sketches are only primitives. While they are simple and

efficient by design, applying them into practical network measure-

ment requires additional extensions or components that often incur

heavy computations. As modern data center networks now scale

to 10Gbps or even higher speeds, sketch-based measurement will

require excessive CPU resources to meet the line-rate requirement.

Even though data centers do not always see high link utilization

in practice [3], achieving line-rate measurement remains critical,

especially in the face of traffic bursts, which indicate the presence
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of hot-spots or even attacks. Thus, not only do we require a mea-

surement solution be resource-efficient under high traffic load, but

also to accurately reason about the behavior of high traffic load.

We present SketchVisor, a robust network measurement frame-

work for software packet processing. By robust, we mean that even

under high traffic load, SketchVisor preserves both high (or even

line-rate) performance and high accuracy for network-wide mea-

surement. Instead of proposing a new sketch design, SketchVisor

augments existing sketch-based solutions with a separate data path

(called the fast path) that provides fast but slightly less accurate

measurement for the packets that cannot be promptly handled

by the underlying sketch-based solutions under high traffic load.

Later, it accurately recovers network-wide measurement results

from both sketch-based and fast path measurements.

Specifically, SketchVisor deploys a distributed data plane across

software switches in the network, each of which processes packets

based on the sketch-based measurement tasks as assigned by net-

work operators, and redirects excessive packets to the fast path if

the tasks are overloaded and cannot process those packets at high

speed. We propose a new top-k algorithm for the fast path to track

large flows. By leveraging traffic skewness estimations and care-

fully designed data structures, our top-k algorithm can achieve low

amortized processing overhead and tight estimation bounds. We

also maintain a global counter to track the traffic entering the fast

path so as to capture the aggregate characteristics of small flows

as well. Note that our fast path is general to support a variety of

measurement tasks designed for different types of traffic statistics.

In addition, SketchVisor deploys a centralized control plane to

merge the local measurement results (from both sketch-based and

fast path measurements) from all software switches to provide

accurate network-wide measurement. As the fast path inevitably

loses information for high performance, we formulate a matrix

interpolation problem to enable the control plane to recover missing

information via compressive sensing [6, 7, 9, 61].

We have implemented a SketchVisor prototype and integrated

it with Open vSwitch [41]. We have conducted extensive testbed

experiments on SketchVisor for a wide range of measurement tasks

and microbenchmarks. We show that for all our evaluated sketch-

based measurement tasks, SketchVisor achieves above 17Gbps

throughput with a single CPU core and near-optimal accuracy

with only few KBs of memory in the fast path.

2 BACKGROUND AND MOTIVATION
We introduce the network measurement tasks considered in this

paper, and demonstrate the overhead of existing sketch-based solu-

tions in software.

2.1 Network Measurement
We target general measurement tasks that monitor traffic and col-

lect traffic statistics, conducted by network operators, over one or

multiple time periods called epochs. Traffic statistics can be either

flow-based (identified by 5-tuples) or host-based (identified by IP

addresses); or either volume-based (measured by byte counts) or

connectivity-based (measured by distinct flow/host counts). This

paper focuses on the following common traffic statistics that have

been extensively studied in the literature.

Packet
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Figure 1: Example of Count-Min sketch.

• Heavy hitter: a flow whose byte count exceeds a threshold in

an epoch.

• Heavy changer: a flow whose change of byte counts across

two consecutive epochs exceeds a threshold.

• DDoS: a destination host that receives data from more than a

threshold number of source hosts in an epoch.

• Superspreader: a source host that sends data to more than a

threshold number of destination hosts in an epoch (i.e., a super-

spreader is the opposite of a DDoS).

• Cardinality: the number of distinct flows in an epoch.

• Flow size distribution: the fractions of flows for different

ranges of byte counts in an epoch.

• Entropy: the entropy of flow size distribution in an epoch.

2.2 Performance Analysis
This paper focuses on sketch-based measurement, which summa-

rizes traffic statistics of all observed packets with theoretical guar-

antees on memory usage and error bounds. At a high level, a sketch
is a compact data structure comprising a set of buckets, each of

which is associated with one or multiple counters. It maps each

packet to a subset of buckets with independent hash functions,

and updates the counters of those buckets. Network operators can

query the counter values to recover traffic statistics.

The actual sketch design varies across measurement tasks. To

show the main idea of sketches, we use a Count-Min sketch [14]

as an example to illustrate how it collects flow-based traffic statis-

tics. As shown in Figure 1, a Count-Min sketch consists of a two-

dimensional array with w columns and d rows. For each packet,

we hash its flow ID (5-tuple) to a bucket in each of the d rows using

d independent hash functions, and then add the packet size to the

counter of each bucket. To recover the size of a given flow, we

use the minimum of the counters of the d hashed buckets as an

estimate. With proper settings of w and d , the estimation flow size

provably incurs a bounded error with a high probability [14].

This example shows that sketches perform fairly simple opera-

tions, mainly hash computations and counter updates. Intuitively,

they should add limited overhead to software packet processing.

Unfortunately, we find that this intuition does not hold in practice.

Observations: Sketches are only primitives that cannot be directly

used for network measurement; instead, we must supplement them

with additional components and operations to fully support a mea-

surement task. In particular, in order to collect meaningful traffic

statistics, we must add extensions to sketches to make them re-
versible, meaning that sketches not only store traffic statistics, but

also efficiently answer queries on the statistics. For example, a

Count-Min sketch can return a flow size only if we query a specific

flow. Thus, if we want to identify, say, heavy hitters that exceed a

pre-specified threshold, a Count-Min sketch can immediately report
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Figure 2: CPU overhead and throughput of sketch-based so-
lutions.

a heavy hitter after updating a packet by checking if the estimated

flow size exceeds the thresholds based on the counters of the hashed

buckets. However, the prior threshold is often unavailable in ad-

vance in practice, and we need to query for heavy hitters subject

to different thresholds. In this case, we must query all candidate

flows in the entire flow space and check if each of them exceeds a

threshold. The flow space size can be extremely large, say 2
104

for

5-tuple flows, thereby leading to substantial query costs.

Some proposals extend sketches with efficient reversibility. Del-

toid [13] encodes flow headers with extra counters in each bucket

and updates these counters on every packet. Reversible Sketch [46]

partitions a flow header and hashes each sub-header into smaller

subspaces. FlowRadar [28] maps flows to counters through XOR

operations, such that new flows can be reconstructed by repeatedly

XOR-ing the counters with known flows. However, such extensions

incur heavy computational overhead.

In addition, most sketch-based solutions are designed for specific

measurement tasks and traffic statistics. To run multiple measure-

ment tasks together, we need to deploy each corresponding solution

separately. Thus, running all of them on every packet becomes

computationally burdensome. The recently proposed UnivMon

[30] allows a single sketch to simultaneously collect different types

of traffic statistics. However, it needs to update various compo-

nents (including CountSketch [8] and top-k flow keys), and remains

computationally expensive (see analysis below).

Microbenchmark: To validate the above claims, we present mi-

crobenchmark results on the software implementations of four

representative sketch-based solutions, namely Deltoid [13], Re-

versible Sketch [46], FlowRadar [28], and UnivMon [30], on heavy

hitter detection. Here, we only measure the overhead of record-

ing packets into each sketch-based solution but not collecting the

recorded traffic statistics, as the latter can usually be done offline.

We employ the same configurations as detailed in §7. Figure 2(a)

shows the number of CPU cycles (measured by Perf [42]) of record-

ing a packet in each solution. FlowRadar is the fastest and spends

2,584 cycles per packet, while Deltoid is the slowest and spends

10,454 cycles per packet. Such high CPU overhead translates to

low throughput under high traffic load. Figure 2(b) shows the

maximum throughput achievable by the four solutions versus the

number of threads. No solution can achieve over 5Gbps with one

thread; and Deltoid barely achieves 5Gbps even with five threads.

Thus, these solutions, while being fast enough under low traffic

load, become computationally intensive and resource demanding

under high traffic load in modern data centers, in which servers

are now commonly equipped with 10Gbps NICs and above.

We further analyze the breakdown of the CPU cycles in each

sketch-based solution, and find that the performance bottlenecks

vary across sketch-based solutions. For example, FlowRadar and

Reversible Sketch incur more than 67% and 95% of CPU cycles,

respectively, on hash computations (including randomizing flow

headers to resolve hash collisions). Deltoid’s main bottleneck is

on updating its extra counters to encode flow headers, and this

accounts for more than 86% of CPU cycles. UnivMon spends 53%

and 47% of CPU cycles on hash computations and heap maintenance,

respectively. The variations of performance bottlenecks also imply

that optimizing specific functions (e.g., using hardware-based hash

computations) may not work well for all sketch-based solutions.

Recent work [1] advocates that simple hash tables would suffice

for network measurement due to improved cache management in

servers and skewness of real-life traffic patterns. Although hash

tables incur fewer computations than sketches [1], they consume

significant memory usage (§7.6). Some systems [21, 29, 38, 62] at-

tempt to filter traffic by predefined rules, so as to reduce memory

usage. However, it requires manual efforts to configure proper rules

to achieve both high accuracy and memory efficiency simultane-

ously. On the other hand, sketches provide theoretical guarantees

on memory usage and error bounds, yet incur high computational

overhead. Although they have not yet been widely deployed, we be-

lieve that their sound theoretical properties make them a promising

building block for network measurement. Our work is to mitigate

the computational overhead of sketch-based measurement, while

preserving the theoretical guarantees of sketches.

3 SKETCHVISOR OVERVIEW
SketchVisor is a robust network measurement framework for soft-

ware packet processing, with several design goals:

• Performance: It processes packets at high speed and aims to ful-

fill the line-rate requirement of the underlying packet processing

pipeline.

• Resource efficiency: It efficiently utilizes CPU for packet pro-

cessing and memory for data structures.

• Accuracy: It preserves high measurement accuracy of sketches.

• Generality: It supports a wide range of sketch-based measure-

ment tasks.

• Simplicity: It automatically mitigates the processing burdens of

sketch-based measurement tasks under high traffic load, without

requiring manual per-host configurations and result aggrega-

tions by network operators.

SketchVisor’s design follows the line of software-defined mea-
surement [23, 30, 36, 37, 56]. It comprises a distributed data plane

that runs on the software switches of multiple hosts in a network,

and a centralized control plane that aggregates the local results of all

software switches and returns network-wide measurement results.

Figure 3 shows both data-plane and control-plane architectures of

SketchVisor.

3.1 Data Plane
The data plane (Figure 3(a)) deploys a measurement module in the

software switch of each host. Each module processes incoming

continuous packet streams and collects traffic statistics for the host.

To avoid duplicate measurement, we can choose to monitor only
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Figure 3: SketchVisor architecture.

either ingress or egress traffic, or leverage hash-based selection to

monitor disjoint sets of packets at different hosts [47]. We divide the

measurement module into two components, namely a normal path
and a fast path. The normal path deploys one or multiple sketch-

based solutions as chosen by network operators, while the fast path

complements the normal path by deploying a fast but slightly less

accurate measurement algorithm to process packets under high

traffic load. Normally, the software switch forwards all packets to

the normal path through a bounded FIFO buffer, which can hold all

packets to be processed and absorb any transient spike. However,

when the traffic load exceeds the processing capacity of the normal

path, the buffer becomes full. In this case, SketchVisor instructs

the software switch to redirect overflowed packets to the fast path,

which then collects traffic statistics from the overflowed packets.

We do not consider any proactive approach that examines packets

and decides which packets should be dispatched into either the

normal path or the fast path, as it will incur non-trivial overhead.

We emphasize that the fast path cannot substitute the sketch-

based solutions in the normal path. The main reason is that the fast

path is less accurate than the normal path by design. To achieve

highly accurate measurement, the normal path has to process as

many packets as possible, while the less accurate fast path is acti-

vated only when necessary.

SketchVisor’s design leaves the deployment decision of what

sketch-based solutions should be deployed to network operators,

since no sketch-based solution can absolutely outperform others in

all aspects. Based on deployment requirements, network operators

can choose either a general sketch-based solution (e.g., UnivMon)

that supports multiple measurement tasks, or a customized one

with better performance for a specific measurement task.

Challenges: The FIFO buffer provides a lightweight means to

determine when to redirect traffic to the fast path (i.e., by checking

if the buffer is full), without compromising the overall measurement

performance. The trade-off is that we cannot control which specific

flows should have packets sent to the fast path, since tracking

specific flows would add processing overhead. This uncertainty

complicates the design of the fast path. Also, instead of assigning a

fast path per measurement task, we associate a single fast path with

all measurement tasks, so that the fast path remains lightweight

regardless of how sketches in the normal path are designed. To

summarize, the fast path should satisfy the following properties:

(i) fast enough to absorb all redirected traffic, (ii) highly accurate,

although the accuracy may slightly degrade from original sketch-

based measurement, and (iii) general for various traffic statistics.

3.2 Control Plane
The control plane (Figure 3(b)) provides a ‘‘one-big-switch” abstrac-

tion for network operators to specify and configure measurement

tasks at network-wide scale. It collects local measurement results

from multiple hosts and merges them to provide network-wide

measurement results. Its goal is to achieve accurate network-wide

measurement as if all traffic were only processed by the normal path
of each host.

Challenges: It is critical to eliminate the extra errors due to fast

path measurement; in other words, all measurement errors should

only come from sketches themselves. However, such error elimina-

tion heavily hinges on the fast path design, which must be general

to accommodate various measurement tasks (§3.1). Similarly, the

error elimination in the control plane must be applicable for any

measurement task.

3.3 Our Solutions
To address the aforementioned challenges, we propose two algo-

rithmic solutions that build on well-studied techniques: the first

one builds on counter-based algorithms [15, 33] to design a light-

weight, accurate, and general fast path in the data plane (see §4

for details), while the second one builds on compressive sensing

[6, 7, 9, 61] to design an accurate network-wide recovery algorithm

in the control plane (see §5 for details). We point out that bundling

existing techniques directly into SketchVisor does not work as ex-

pected. Instead, we carefully analyze the overhead of the existing

techniques, and then motivate and design our customized solutions

in the context of sketch-based network measurement.

4 FAST PATH
4.1 Key Idea
The fast path is critical for the robustness of sketch-based measure-

ment. Without the fast path, the normal path unavoidably discards
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traffic to keep pace with high traffic load, which compromises mea-

surement accuracy and even makes some measurement tasks fail

to work (§7.3).

We design the fast path to track as much information as pos-

sible in network traffic with low computational overhead. It is

well-known that network traffic in practice exhibits heavy-tailed

patterns and is dominated by a few large flows [54, 59], so we ex-

pect that the traffic redirected to the fast path is also dominated

by large flows (§7.5). Note that this heavy-tailed assumption in-

duces many new sketch designs (e.g., identifying large flows in

skewed network traffic). While the inherent sketch designs do not

depend on any input distribution, they often achieve better perfor-

mance under skewed distributions as shown by theoretical analysis

[19] and empirical studies [12]. This motivates us to specifically

track the largest flows, or top-k flows, in the fast path, where k is

configurable depending on the available memory space.

However, tracking only top-k flows is insufficient, since it will

inevitably miss information of small flows, which are also crit-

ical for connectivity-based statistics (e.g., DDoS, superspreader,

and cardinality). Clearly, tracking all small flows in the fast path

is infeasible, as the CPU and memory overheads become expen-

sive. Fortunately, sketch-based solutions map flows to counters

and leverage the counters to estimate various flow statistics. Our

observation is that the values of sketch counters contributed by

small flows are generally small and also have low variance when

compared to large flows. Thus, we only need to track the overall

characteristics of small flows instead of their individual flow head-

ers and sizes. Specifically, we employ a global variable to track the

total byte count of these flows, and use it to infer the specific sketch

counter values later in the control plane.

Solution overview: To this end, we design a fast and accurate

top-k algorithm for our fast path. Our algorithm builds on Misra-

Gries’s top-k algorithm [33]. However, Misra-Gries’s algorithm has

two limitations that prohibit high performance and accuracy. First,

in order to kick out a small flow and add a (potentially) large flow,

it performs O(k) operations to update k counters in a hash table;

the overhead becomes significant when there are many small flows

to kick out. Second, it has loose bounds on the estimated values

of the top-k flows. To overcome both limitations, we combine

the idea of probabilistic lossy counting (PLC) [15], a probabilistic

algorithm that improves accuracy for tracking skewed data, with

Misra-Gries’s algorithm. Specifically, we kick out multiple small

flows each time, obviating the need of performing O(k) counter

update operations for kicking out each flow (i.e., we amortize the

operations over multiple kick-outs). Also, instead of using one

counter per flow, we carefully associate three counters with each

flow to provide tight per-flow lower and upper bounds.

4.2 Algorithm
Data structure: We maintain a hash table H that maps flow head-

ers (hash keys) to counters (hash values). We configure H to hold

at most k flows. Each flow f is associated with three counters.

• ef : the maximum possible byte count that can be missed before

f is inserted.

• rf : the residual byte count of f .

• df : the decremented byte count after f is inserted.

Algorithm 1 Fast Path Algorithm

Input: packet (f , v)
1: function ComputeThresh(a1, a2, · · · , ak+1

)

2: Find the largest two values a1 and a2 and the smallest value ak+1

3: Compute θ = logb ( 12 ), where b = a1−1

a2−1

4: Return ê = θ√
1 − δak+1

for some small δ
5: procedure UpdateBucket(f , v )

6: V = V + v
7: if f has an entry (ef , rf , df ) in H then
8: Update the entry with (ef , rf + v, df )
9: else if H is not full then

10: Insert f to H and set H [f ] = (E, v, 0)
11: else
12: ê = ComputeThresh({rд |д ∈ H } ∪ {v })
13: for all key д ∈ H with H [д] = (eд, rд, dд ) do
14: Update H [д] with (eд, rд − ê, dд + ê)
15: if rд ≤ 0 then
16: Remove д from H
17: if v > ê and H is not full then
18: Insert f to H and set H [f ] = (E, v − ê, ê)
19: E = E + ê

We also keep two global counters for the hash table, which we

later use to recover the aggregate statistics of small flows in the

control plane (§5).

• E : the sum of all decremented byte counts.

• V : the total byte count of packets in the fast path.

Algorithm: Algorithm 1 shows our fast path algorithm. Its idea

is to keep the top-k flows in H , and remove from H any flow that

is below some threshold if H is full. Specifically, upon receiving

a packet of size v for flow f , we first update the total byte count

V (line 6). If f is already in the hash table H , we increase the

residual byte rf (lines 7-8); if H is not full (i.e., it has fewer than k
flows), we insert f with (E,v, 0) to H (lines 9-10); otherwise, we

use ComputeThresh to compute a decremented value ê (line 12).

For each flow д in H , we decrease rд by ê and increase dд by ê
(line 14). We kick out flows with residual byte counts no larger

than 0 (lines 15-16). We add f to H if its remaining byte count is

larger than ê (lines 17-18). Finally, we update the total decremented

byte count E (line 19).

The function ComputeThresh selects a threshold ê with respect

tok+1 values, i.e., the values of the top-k flows inH and the value of

the new flow f . It fits the input values to a power-law distribution

and estimates the power-law exponent θ (line 3) and threshold ê
(line 4), as in PLC [15]. Lemma 4.1 states that Algorithm 1 provides

tight lower and upper bounds of each top-k flow tracked by H . In

Appendix, we explain how θ and ê are derived, and present the

proof of Lemma 4.1.

Lemma 4.1. Algorithm 1 has the following properties:
• If flow f has size vf > E, it must be tracked in H .
• If f ∈ H , rf + df ≤ vf ≤ rf + df + ef .
• For any flow, its maximum possible error is bounded by O(Vk ).

Discussion: Lemma 4.1 does not assume any statistical distribu-

tion. It implies that the per-flow error, which is bounded by O(Vk ),
decreases with k . On the other hand, tracking more large flows
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f e r d
f0 0 9 0
f1 0 7 0
f2 0 2 0

V=18,  E=0
(a)  A  stream  of  packets (b)  Receive  p0,  p1,  p2

f e r d
f0 0 7 2
f1 0 5 2
f2 0 0 2

V=21,  E=0
(c)  Receive  p3 (before  kick-out)

f e r d
f0 0 7 2
f1 0 5 2
f3 0 1 2

V=21,  E=2
(d)  Receive  p3 (after  kick-out)

f e r d
f0 0 6 3
f1 0 4 3
f3 0 0 3

V=26,  E=2
(e)  Receive  p4 (before  kick-out)

f e r d
f0 0 6 3
f1 0 4 3
f2 2 4 1

V=26,  E=3
(f)  Receive  p4 (after  kick-out)

f0 9p0 f1 7p1

f2 2p2 f3 3p3

f2 5p4

Figure 4: Example of fast path.

needs more memory and time to traverse the hash table for kick-out

operations. Thus, the value of k trades between performance and

accuracy. Nevertheless, a small hash table suffices in practice since

the fast path is activated only when necessary (§7.5).

Example: We use an example (Figure 4) to illustrate how Algo-

rithm 1 works and how the counters bound the flow sizes. Suppose

that we have a stream of five packets and the hash table H has

three buckets. For the first three packets (i.e., p0,p1,p2), we insert

three flows (i.e., f0, f1, f2) into H , and V represents their total byte

count so far (Figure 4(b)). For the fourth packet p3, since H is full,

we want to kick out small flows and check if we can insert the

new flow f3. To do this, we invoke ComputeThresh to compute a

decrement for each flow (which is 2 in this case), and update their

r and d (Figure 4(c)). We kick out f2 because its r becomes 0, and

insert the new flow f3 (Figure 4(d)). Finally, we see a packet p4

from f2 again. We still use ComputeThresh to kick out a small

flow, which is f3 in this case (Figure 4(e)), and insert f2 (Figure 4(f)).

Note that we set the e of f2 to be 2 because we have decremented 2

bytes in total before f2 is inserted. This e represents the maximum

possible byte count that is not included for f2 when f2 is not in the

table yet. Thus, the upper bound of f2 is e + r + d = 7. The lower

bound is r + d = 5 because we count every byte after the flow is

inserted. We emphasize that in this example, we kick out one flow

each time for brevity, but in general, ComputeThresh computes a

threshold that can kick out multiple flows at a time, which is our

main improvement over Misra-Gries’s algorithm [33].

Generality: Our fast path design is applicable for general traf-

fic statistics listed in §2.1. The fast path monitors 5-tuple flows

and clearly supports flow-based statistics. It can also extract IP

addresses from 5-tuples for host-based statistics. To track more

fine-grained flows, we only need to extend the flow definition with

more fields (e.g., MAC addresses).

The fast path is volume-based and tracks byte counts, yet we

can also use it to track connectivity-based statistics (e.g., DDoS,

superspreader, and cardinality) by converting connectivity-based

sketches in the normal path into volume-based sketches, similar

to the approach in Counting Bloom Filter [4, 34]. Specifically,

connectivity-based sketches typically maintain bit arrays and set a

bit to one if any observed flow/host is hashed to the bit. We now

replace bits by counters and update the counters by byte counts.

5 NETWORK-WIDE RECOVERY
5.1 Key Idea
The control plane provides network-wide measurement by peri-

odically collecting local measurement results from all hosts and

operating on the global views of the normal path and the fast path.

Specifically, it aggregates all sketches via matrix additions into a

single sketch N (i.e., the sketch counters at the same position are

added together), merges all top-k flows and their respective esti-

mated byte counts into a single hash table H1
, and adds all recorded

total byte counts into V . Note that the fast path loses information,

as it only holds approximate counters for top-k flows and does

not keep track of specific small flows. Thus, given N , H , and V ,

the goal of the control plane is to accurately recover the missing

information and hence the true sketch T , as if all traffic were only

recorded in T .

Solution overview: We first formulate the recovery of T as a ma-
trix interpolation problem (§5.2). Our formulation also demonstrates

the hardness of the recovery problem. To this end, we leverage

compressive sensing [6, 7, 9, 61] to solve the recovery problem by

incorporating domain knowledge into optimization.

5.2 Problem Formulation
Interpolation refers to reconstructing missing values based on in-

complete and/or indirect observations. In our case, we formulate

a matrix interpolation problem that recovers the true sketch T by

filling the missing values in N based on H and V . We first derive

problem constraints that need to be satisfied by T .

Constraints: We decompose the traffic (in bytes) in the fast path

into two 2
104× 1 vectors indexed by 5-tuple flow header space,

namely x and y, where x denotes the vector of the actual byte

counts of the tracked flows (i.e., flows in H ) and y denotes the

vector of the actual byte counts of other flows. If a flow does not

exist, its vector element has value zero. Thus, the vector x + y
describes the per-flow traffic counts in the fast path.

To recover T , conceivably, we could inject all traffic of the fast

path back to the normal path. This in essence applies the sketch

function to x + y, denoted by sk(x + y), and adds sk(x + y) to N to

obtain T :

T = N + sk(x + y). (1)

However, both x and y are unknown in practice, as the fast path

does not track the actual byte counts of individual flows. Neverthe-

less, we can specify their constraints. First, the fast path tracks the

total byte count V . We can relate x and y to V via their l1-norms

(resp. ‖x‖1 and ‖y‖1) as:

‖x‖1 + ‖y‖1 = V . (2)

1
To simplify notation, we overload H to denote the global hash table in this section.
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Also, while the merged hash table H does not track x, it gives

the lower and upper bounds for each flow due to Lemma 4.1:

rf + df ≤ xf ≤ rf + df + ef . (3)

Hardness: Our problem is to find T that satisfies the constraints

Equations (1)-(3), in which Equations (1) and (2) characterize the

aggregate properties of the traffic in the fast path, while Equa-

tion (3) quantifies the errors of individual flows. Unfortunately,

the fast path only provides incomplete information, and the above

constraints are insufficient to unambiguously determineT ; instead,

there exist multiple feasible solutions. This so-called undercon-
strained problem is commonly found in many matrix interpolation

problems [24, 60]. Thus, instead of finding a closed form of T , we

find the ‘‘best’’ estimate of T .

5.3 Compressive Sensing
We leverage compressive sensing [6, 7, 9, 61] to solve our under-

constrained matrix interpolation problem. Compressive sensing

provides a framework to integrate domain knowledge about matrix

structures, so as to eliminate feasible but irrelevant solutions and

form a solvable optimization problem [9, 61]. In our case, we incor-

porate our knowledge about the properties of network traffic and

sketches to form an appropriate optimization objective function.

Properties: We first identify the properties for T , x, and y.

• T is approximated as a low-rank matrix: As network traffic

is dominated by large flows [54, 59], few counters in T have

much different values from other counters that are only accessed

by small flows. Thus, we can approximateT as a low-rank matrix

(see justifications later).

• Both x and sk(x) are sparse: Since x only includes the top

flows in H and the entire flow space has a very large size (e.g.,

2
104

for 5-tuple flows), we can treat x as a sparse vector. Also,

each flow in x touches a limited number of counters in a sketch,

so sk(x) is also sparse.

• Both y and sk(y) are of small noise: Network traffic is often

dominated by few large flows that are recorded in x. The remain-

ing flows in y are all very small and their sizes have low variance.

Thus, we can treat y as a small-noise vector. In addition, a sketch

maps such small-noise flows uniformly to its counters, so sk(y)
is also of small noise.

Before describing how we incorporate the above properties into

an optimization objective, we conduct rank analysis to validate the

low-rank approximation of T . We apply singular value decomposi-

tion to generate low rank approximations [18] for several sketch

matrices, using the same configurations in §7. Figure 5 shows the

relative errors (measured by Frobenius norm) of the low rank ap-

proximations. Reversible Sketch [46], Deltoid [13], and TwoLevel

[56] take only around 50%, 32%, and 15% of singular values to

achieve low rank approximations with less than 10% of errors, re-

spectively (i.e., they can capture more than 90% of information). On

the other hand, the relative error of Count-Min Sketch [14] drops

linearly with the ratio of top singular values. The reason is that it

typically has few rows (less than 10) with thousands of counters

each. Such a simple matrix has a rank equal to its number of rows

and shows no low rank approximation. Nevertheless, we can still

leverage the optimizations of x and y to accurately recover T .
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Figure 5: Error of low rank approximation for sketch-based
solutions.

Objective function: We now encode the above properties into

the objective function, and leverage the compressive sensing frame-

work LENS [9] to recover T . LENS works by decomposing a traffic

matrix into low-rank, sparse, and small-noise components and

forming an objective function that characterizes the components.

Note that LENS mainly addresses traffic matrices that specify traffic

volume between all source and destination pairs, while we focus on

sketches that map flows to counters and have completely different

structures from traffic matrices. Nevertheless, our components T ,

x, and y actually share similar properties to LENS as argued above.

Thus, we follow LENS and derive the following objective function:

minimize: α ‖T ‖∗ + β ‖x‖1 +
1

2γ
‖y‖2F , (4)

where α , β , and γ are weighting parameters that are configurable

(see details below). The three terms in the objective function have

the following meanings:

• ‖T ‖∗ =
∑
i σi , where σi ’s are singular values of T . It is the

nuclear norm [44] of T and penalizes against the high rank of T .

• ‖x‖1 =
∑
i |xi |. It is the l1-norm of x and penalizes against the

lack of sparsity in x.

• ‖y‖2F =
∑
i y

2

i . It is the squared Frobenius norm of y and penal-

izes against large elements in y.

Our objective function provides a general framework for the

recovery of all sketches, even though some terms may not be nec-

essary. For example, the term y has limited impact on sketches for

heavy hitter detection, since heavy hitter detection mainly focuses

on large flows in x and a sub-optimal y is also acceptable. Also, for

sketches that do not have low-rank approximations (e.g., Count-

Min Sketch in Figure 5), the nuclear norm of T is nearly a constant,

so we can discard the term ‖T ‖∗ in the optimization objective.

Problem solving and parameter settings: The optimization

problem minimizes the objective function Equation (4) subject to

the constraints Equations (1)-(3). This is a convex optimization

problem, which is computationally tractable. We use the Alterna-

tive Direction Method to efficiently solve this problem [9]. Our

optimization formulation has three parameters, i.e., α , β , and γ .

Following the guidelines of LENS [9], we set parameters as follows.

α = (√mT +
√
nT )

√
η(N ).

β =
√

2 log(mx · nx ) =
√

2 × 104.

γ = 10 · γy .
First, we consider α . The constantsmT and nT are the numbers of

rows and columns of matrixT , while η(N ) is the probability density

of matrix N and is set as

∑
i, j N [i][j]
mT ·nT . Next, we consider β . The
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constantsmx and nx are numbers of rows and columns of vector

x, respectively. Since x is a 2
104× 1 vector, we have β =

√
2 × 104.

Finally, we consider γy . It denotes the measurement noise and is

estimated as the standard deviation of vector y.

6 IMPLEMENTATION
We have built a prototype of SketchVisor in C that supports various

measurement tasks and sketch-based solutions, as summarized in

Table 1. All sketches build on the hash function as in Snort [50].

Data plane: We have implemented SketchVisor’s data plane and

integrated it with Open vSwitch [41]. It has three components: (i) a
kernel module, which collects and dispatches packets to the normal

path and the fast path, (ii) a user-space daemon, which hosts the

normal path, and (iii) a shared memory block, which hosts both the

normal path’s FIFO buffer and the fast path, and is accessible by

both the kernel module and the user-space daemon.

The kernel module is an extension to the original datapath kernel

module of Open vSwitch. When a packet arrives, the kernel module

updates the shared memory block, by inserting the packet header

to the FIFO buffer or directly updating the fast path if the buffer is

full. It also exports a set of interfaces (e.g., open, close, and mmap)

to make it accessible by the user-space daemon. Our modification

of the datapath module is around 1,400 LOC.

The user-space daemon maintains all required sketches for the

normal path, and maps the shared memory block to its own memory

space via mmap. It continuously reads packet headers from the FIFO

buffer and updates sketches. Also, it periodically reports the results

of both the normal path and fast path to the control plane every

epoch, and resets all counters and variables for the next epoch.

The shared memory block provides a lightweight channel for the

kernel module and the user-space daemon to exchange information.

It eliminates context switching during measurement, as opposed to

the upcall mechanism in Open vSwitch (which is based on Linux

NetLink). One challenge is to efficiently synchronize the access

to the shared memory block between the kernel module and the

user-space daemon. For the FIFO buffer, since it has only a single

producer (i.e., the kernel module) and a single consumer (i.e., the

user-space daemon), we implement it as a lock-free circular buffer
that is optimized for cache-line efficiency [27]. For the fast path,

the user-space daemon makes a snapshot of the fast path and resets

the fast path immediately when reporting results. When it reports

the snapshot, the kernel module continues to update the fast path

without being blocked.

Note that Open vSwitch’s kernel-based packet forwarding mod-

ule works independently with SketchVisor’s measurement com-

ponents. Thus, SketchVisor can be deployed atop other software

packet processing frameworks with high packet forwarding per-

formance (e.g., Open vSwitch integrated with the Data Plane De-

velopment Kit (DPDK) [17]). In such environments, we expect that

SketchVisor provides even more performance and accuracy bene-

fits, as the sketch-based measurement overhead now becomes more

significant; we plan to study this issue in future work.

Control plane: The control plane implements network-wide re-

covery. It receives results from the data plane in each host through

ZeroMQ [58]. The compressive sensing solver is based on [9, 61],

and uses the svdcomp [53] library for singular value decomposition.

Measurement task Sketch-based solutions

Heavy hitter (HH) detection

FlowRadar [28]

RevSketch [46]

UnivMon [30]

Deltoid [13]

Heavy changer (HC) detection

FlowRadar [28]

RevSketch [46]

UnivMon [30]

Deltoid [13]

DDoS detection TwoLevel [56]

Superspreader (SS) detection TwoLevel [56]

Cardinality estimation

FM [20]

kMin [2]

Linear Counting (LC) [55]

Flow size distribution

FlowRadar [28]

MRAC [26]

Entropy estimation

FlowRadar [28]

UnivMon [30]

Table 1: Measurement tasks and sketch-based solutions.

7 EVALUATION
We conduct experiments to demonstrate that SketchVisor can: (i)
achieve both high performance and high accuracy for various mea-

surement tasks, (ii) work seamlessly with various sketch-based

solutions, (iii) scale to a large number of hosts in stress tests, and

(iv) achieve comparable performance with much less memory to

[38], a recently proposed measurement framework based on simple

hash tables.

7.1 Methodology
Testbed: We deploy SketchVisor on a testbed composed of nine

hosts, each of which is equipped with Intel Xeon X5670 2.93GHz

CPU, 300GB memory, a Broadcom BCM5709 NetXtreme Gigabit

Ethernet NIC, and a Mellanox MT27710 10-Gigabit Ethernet NIC.

We run the data plane in eight hosts, which send traffic through

the 10Gb NICs, and the control plane in the remaining host, which

communicates with the data plane through the 1Gb NICs. In each

host, we run SketchVisor (either data plane or control plane) as a

single-threaded process on a dedicated CPU core.

In-memory tester: Our testbed is inadequate for scalability eval-

uation, as its scale is limited by the per-host NIC speed (10Gbps)

and the number of physical hosts in the data plane (eight hosts).

Thus, we also evaluate a SketchVisor variant called the in-memory
tester, which executes the core data plane and control plane log-

ics entirely in memory. For the data plane, the in-memory tester

processes traffic that is loaded into memory in advance, without

forwarding traffic to Open vSwitch and NIC; for the control plane,

the in-memory tester performs network-wide recovery from the

local measurement results that are again loaded into memory in

advance. We run the in-memory tester as a single-threaded pro-

cess on a dedicated CPU core. Our in-memory tester eliminates

network transfer overhead, so as to stress-test the computational

performance of SketchVisor.

Parameter settings: By default, we allocate 8KB memory for the

fast path (we study different fast path sizes in §7.5), and set the

parameters of our network-wide recovery algorithm as described

in §5. For the measurement tasks and sketch-based solutions in
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Table 1, we set their parameters such that the sketch-based solu-

tions for each measurement task have the same error bound based

on their theoretical analysis. For some sketch-based solutions (e.g.,

FlowRadar [30]) that address the worse-case scenario and require

excessive resources, we manually reduce their memory usage with-

out increasing their errors based on our experiments.

• Heavy hitter (HH) detection: We set the HH threshold as 0.05% of

the NIC capacity multiplied by the epoch length. We evaluate

four sketches. (i) Deltoid: we use four rows with 2/0.05% =

4,000 counters each, and the error probability is 1/24 = 1/16.

(ii) Reversible Sketch (RevSketch): similar to Deltoid, we use

four rows with 4,000 counters each, and partition a 104-bit five

tuple into 16-bit words. (iii) UnivMon: we allocate 4,000, 2,000,

1,000, 500 counters in the first, second, third sketches, and others,

respectively, and track top 500 flows in its heap. (iv) FlowRadar:

we use four hash functions in both the Bloom Filter and counter

array, and set the Bloom Filter length as 100,000 and the counter

array length as 40,000.

• Heavy changer (HC) detection: We set the threshold as 0.05% of

total changes over two adjacent epochs, and use the same sketch

settings as in HH detection.

• DDoS detection: We set the threshold as 0.5% of the total number

of IP addresses. We evaluate TwoLevel [56], which consists of a

Count-Min sketch and a RevSketch. For the Count-Min sketch,

we allocate two rows with 4,000 counters each, and for each

bucket in the Count-Min sketch, we allocate two rows with 250

counters each. For the RevSketch, we allocate two rows with

4,096 counters each to track candidate IP addresses, and partition

a 32-bit IP address into four 8-bit words.

• Superspreader (SS) detection: We use the same setting as DDoS

detection.

• Cardinality estimation: We evaluate FM, kMin, and Linear Count-

ing (LC). We allocate four rows with 65,536 counters each for

FM and kMin, and four rows with 10,000 counters each for LC.

• Flow size distribution: We evaluate MRAC and FlowRadar. For

MRAC, we allocate a single row with 4,000 counters; for FlowRadar,

we use the same setting as in HH detection.

• Entropy estimation: We evaluate FlowRadar and UnivMon with

the same setting as in HH detection.

Workloads: We use five one-hour public traffic traces collected

in 2015 from CAIDA [5]. In our testbed experiments, we evenly

partition the traces and distribute them across hosts. We modify

the MAC addresses of packets, and replay and forward the packets

across hosts. Before each experiment, we load the traces into mem-

ory to eliminate any disk IO overhead. Each host sends out traffic as

fast as possible to test the maximum throughput of SketchVisor. In

practice, the network utilization is often lower, so a higher portion

of network traffic can be handled by the normal path and we expect

to see better performance and accuracy.

We evaluate each sketch-based solution separately to show its

performance gain with SketchVisor; we do not explicitly evaluate

the combination of multiple sketch-based solutions, yet some of

them (e.g., TwoLevel) comprise multiple sketches by design. The

data plane reports measurement results to the controller in one-

second epochs. In each epoch, we find that each host generates

around 30K-70K flows, 370K-480K packets, and 260MB-330MB traf-

fic. We repeat each experiment 10 times and report the average of

all trials across all epochs. We find that the standard error of each

trial is insignificant and only deviates from the average by at most

5%, so we omit error bars in our plots.

Metrics: We consider the following metrics:

• Throughput: the total traffic volume processed per second (it

can be transformed into the packet rate, as the average packet

size in our dataset is 769 bytes).

• Recall: the ratio of true instances reported.

• Precision: the ratio of reported true instances.

• Relative error:
1

n
∑n−1

i=0

|vi−v̂i |
vi where vi is the true value of i

and v̂i is the estimate of i .

• Mean Relative Difference (MRD):
1

z
∑z
i=1

|ni−n̂i |
(ni+n̂i )/2 , where z is

the maximum flow size, and ni and n̂i are the true and estimated

numbers of flows with size i , respectively.

Throughput is used for all tasks, while the remaining metrics

are accuracy-related and are used based on the nature of the traffic

statistics:

• HH, HC, DDoS, SS: recall, precision, relative error.

• Cardinality, entropy: relative error.

• Flow size distribution: MRD.

7.2 Throughput
We evaluate the throughput of SketchVisor by deploying different

sketch-based solutions in the normal path. We compare three

alternatives: (i) NoFastPath, which only executes the normal path

without the fast path, (ii) MGFastPath, which uses the original

Misra-Gries’s top-k algorithm in the fast path, (iii) SketchVisor,
which uses our proposed top-k algorithm in the fast path.

Figure 6(a) shows the testbed results. SketchVisor achieves al-

most 10Gbps for all sketches. NoFastPath only achieves almost

10Gbps for MRAC and from 1.32Gbps to 6.41Gbps for others. MG-

FastPath is faster than NoFastPath, but still achieves no more than

5Gbps for four out of nine sketches. Figure 6(b) shows the in-

memory tester results. NoFastPath and MGFastPath still cannot

achieve 10Gbps for most sketches. In contrast, SketchVisor achieves

over 17Gbps for all sketches, and almost 40Gbps for MRAC in par-

ticular. Note that this result is measured in a single CPU core and is

much higher than five-core results (without the fast path) in §2. We

can further boost the throughput by parallelizing the normal path

and fast path with multiple CPU cores and merging their results

later in the control plane. Our results show that two CPU cores are

sufficient to achieve above 40Gbps for all sketches (not shown in

the figure).

7.3 Accuracy
We evaluate the accuracy of SketchVisor. We compare five alterna-

tives: (i) NoRecovery (NR), which only uses the normal path results

and discards the fast path results, (ii) LowerRecovery (LR), which

only combines the lower-bound estimates in the fast path with the

normal path results, (iii) UpperRecovery (UR), which only combines

the upper-bound estimates in the fast path with the normal path

results, (iv) SketchVisor, and (v) Ideal, which uses the normal path

to process all traffic, without adding extra errors due to the fast path

(i.e., all errors come from sketches themselves). To compute the
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Figure 6: Throughput of different sketch-based solutions.
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Figure 7: Accuracy of HH/HC detection.
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Figure 8: Accuracy of DDoS and SS detection.
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Figure 11: Entropy estimation.

accuracy metrics, we generate the ground truth (with zero error) by

tracking the whole trace with a very large hash table, and compare

the results of each alternative with the ground truth.

HHandHCdetection (Figure 7): NR has much lower recall and a

higher relative error than Ideal. For example, in UnivMon, the recall

of NR is only 8.15% in HH detection and 16.43% in HC detection,

while the corresponding relative errors are 98.63% and 102.58%,

respectively. The reason is that NR discards all information in the

fast path. LR improves the overall recall, but is still below 80% as it

underestimates the sizes and changes for many true HHs and HCs.

UR achieves high recall, but at a cost of low precision. In contrast,

SketchVisor achieves close accuracy to Ideal for all three metrics.

DDoS and SS detection (Figure 8): NR, LR, and UR all have low

recall and high relative errors. In particular, NR even cannot detect

any DDoS or superspreader. LR and UR have the same detection

results since DDoS and SS detection concerns the number of hosts

instead of flow size. In contrast, SketchVisor achieves nearly perfect

results in SS detection. For DDoS detection, the accuracy drops

slightly compared to Ideal, but the recall is still above 90% and the

precision is above 84%.

Cardinality estimation (Figure 9): In FM and kMin, the errors

of NR, LR and UR are all nearly twice those in Ideal, while their

errors are around 17% in LC. SketchVisor significantly reduces the

errors and is close to Ideal. The reason is that all the three sketches

estimate cardinality based on non-zero counters. Since the small

hash table in the fast path discards many flows, NR, LR, and UR

end up with many zero counters in the sketch, and thus have poor

accuracy. In contrast, SketchVisor restores non-zero counters with

compressive sensing.

Flow size distribution (Figure 10): For MRAC, all approaches

achieve near-optimal MRD (around 0.2%), since MRAC is fast enough

that only few flows enter the fast path. For FlowRadar, NR, LR, and
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Figure 12: Network-wide recovery.
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Figure 13: Percentage of traffic in the fast path.

UR increase the MRD from 0.0126% in Ideal to 0.1166%, 0.0844%, and

0.0954%, respectively, mainly because they do not consider the miss-

ing small flows dropped by the fast path. In contrast, SketchVisor

reduces the error to 0.0553%.

Entropy estimation (Figure 11): Interestingly, SketchVisor has a

slightly lower error than Ideal, as it can eliminate a small amount of

errors caused by the sketch itself when recovering it using compres-

sive sensing, while Ideal directly returns the sketch that processes

all traffic in the normal path.

7.4 Network-Wide Recovery
We evaluate the network-wide recovery of SketchVisor. To evalu-

ate a large network size, we use our in-memory tester and configure

the control plane to aggregate results from 1 to 128 hosts. Here,

we show the results of HH detection, HC detection, cardinality

estimation, and entropy estimation in Figure 12. The accuracy re-

sults vary across measurement tasks and sketch-based solutions.

Overall, SketchVisor improves accuracy as the number of hosts

increases. For example, the recall of UnivMon increases from 65%

to 81% when the number of hosts increases from one to two. The

recall is even above 99% when the number of hosts exceeds four.

The reason for accuracy improvement is that integrating results

from multiple hosts (i) reduces the number of missing values in

sketch matrices and (ii) increases the number of constraints in our

recovery optimization. Also, some sketches (e.g., kMin in cardinal-

ity estimation) already achieve high accuracy in a single host, and

maintain high accuracy as the number of hosts increases.

7.5 Microbenchmarks
Percentage of traffic in the fast path: Figure 13(a) shows that

SketchVisor redirects more than 20% (resp. 50%) of flows to the

fast path in the testbed (resp. in-memory tester), except for MRAC.

Figure 13(b) shows that the fast path processes more than 50% of

byte counts for most tasks in both testbed and in-memory exper-

iments. The percentage for MRAC is negligible since MRAC is a

simple sketch. Note that our default 8KB fast path only records

around 0.7% of total flows (Figure 13(a)), while contributing to over

20% of byte counts (Figure 13(b)) due to traffic skewness.

We further examine the traffic redirected to the fast path specif-

ically, and find that the top 10% of flows tracked by the fast path

account for over 90% of byte counts for all solutions except MRAC,

and over 80% of byte counts for MRAC; we do not plot the results

in the interest of space.

Impact of fast path size: We configure various sizes for the fast

path: 4KB, 8KB, 16KB, and 32KB. We measure the throughput and

accuracy: HH and cardinality, using the same accuracy metrics in

§7.3. Figure 14(a) shows that the throughput varies by less than 5%

across fast path sizes. The reason is that while a larger hash table

in the fast path implies a longer time to search for small flows to

be kicked out, it also sustains more hash table insertions/updates

before triggering a new kick-out operation. Figures 14(b)-(d) show

the accuracy versus the fast path size. The accuracy improves

remarkably when the fast path size increases from 4KB to 8KB

(e.g., the HH recall of Deltoid increases from 65.17% to 97.21%), and

stabilizes when the fast path size exceeds 8KB.

Computation time of network-wide recovery: The computa-

tion time to solve compressive sensing varies from 0.15 seconds

(for MRAC) to 64 seconds (for Deltoid) in a single CPU core, de-

pending on the number of sketch counters (we omit the figures in

the interest of space). We can reduce the computation time in two

ways. First, some terms in the objective function do not need to be

optimal for some sketches (see discussion in §5.3), so it is possible

to terminate the computation early even though these unnecessary

terms do not converge. We have evaluated this optimization and
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Figure 14: Impact of the fast path size.
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Figure 15: CPU overhead of sketch-based solutions.

find that the computation time for Deltoid can decrease from 64 sec-

onds to 11 seconds. Second, our current solver is single-threaded.

Since the recovery across epochs is independent, we can parallelize

network recovery through multiple CPU cores.

Comparison with Misra-Gries’s algorithm: We compare the

fast path of SketchVisor with the original Misra-Gries’s algorithm

(MGFastPath). We consider two metrics: (i) the number of kick-out

operations, which accounts for the major overhead in the fast path,

and (ii) the relative errors of top flows (including both lower and

upper bounds). Figure 16(a) shows that MGFastPath performs an

order of magnitude more kick-out operations than SketchVisor.

This explains why MGFastPath only slightly improves the through-

put compared to NoFastPath (Figure 6). Figure 16(b) shows the

relative errors on both lower bounds and upper bounds of top-k
flows in the fast path for Deltoid. MGFastPath increases the errors

as k grows. For the 100-th flow, the relative error increases to 35%.

In contrast, SketchVisor keeps the errors under 2% as we tighten

the lower and upper bounds using three counters per flow.

CPU overhead for normal path and fast path: We revisit the

CPU overhead of different sketch-based solutions when the fast path

is used. Figure 15 shows the number of CPU cycles for recording a

packet in each sketch-based solution, as well as those for the update

and kick-out operations of the fast path. The number of CPU cycles

varies across sketch-based solutions, from 404 (for MRAC) to 10,454

(for Deltoid). In contrast, the fast path spends only 47 cycles to

record a new flow or update an existing flow in its hash table. While

a kick-out incurs excessive CPU overhead, the fast path limits the

number of kick-outs (Figure 16(a)).

7.6 Comparison with Trumpet
Finally, we show that SketchVisor can approach the performance

and accuracy of simple hash tables [1] (§2.2), while using much less

memory. We consider the recently proposed Trumpet [38], a soft-

ware measurement architecture that tracks per-flow information in

simple hash tables rather than sketches. Specifically, we implement

Trumpet Packet Monitor to monitor traffic in the data plane, and de-

ploy a single trigger to monitor heavy hitters. This trigger requires

a single variable for byte counts and does not contain any predi-

cates to filter traffic. Note that Trumpet deals with hash collisions

by over-provisioning hash tables, but requires substantial memory

to completely eliminate collisions. Therefore, our implementation
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Figure 17: Comparison with Trumpet [38].

allocates a hash table with a small over-provisioning factor and

deals with hash collisions by linked lists. We present the results

with over-provisioning factors 3 and 7, referred to as Trumpet3x

and Trumpet7x, respectively.

Figure 17 compares the throughput and memory consumption of

SketchVisor with Trumpet. SketchVisor achieves similar through-

put as Trumpet (Figure 17(a)). However, the sketches except Deltoid

consume much less memory than Trumpet (Figure 17(b)). The rea-

son is that Trumpet tracks per-flow information in a hash table,

while sketches store information in a fixed number of counters.

Although Trumpet provides perfect monitoring, we have shown

that sketches can also achieve near-optimal accuracy for various

tasks. Thus, SketchVisor provides an efficient alternative for net-

work measurement, especially when the hash table size increases

linearly with the number of flows.

8 RELATEDWORK
Our work is related to software-defined measurement. We review

related work in this area.

Sampling: Sampling is widely used in software-defined measure-

ment for low measurement overhead. Sekar et al. [48] combine

flow sampling and sample-and-hold [19] as primitives for various

measurement applications. OpenSample [52] reconstructs flow sta-

tistics based on sampled traffic. Planck [43] mirrors traffic to remote

sites in a best-effort manner. However, sampling inherently misses

information and supports only coarse-grained measurement.

Sketches: Many architectures employ sketches as primitives to

achieve fine-grained measurement for various measurement tasks
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(see Table 1). In the context of software-defined measurement,

OpenSketch [56] defines APIs for general sketch-based measure-

ment tasks running in commodity switches. SCREAM [37] ad-

dresses dynamic resource allocation of sketch-based measurement

across multiple switches. However, sketch-based measurement

incurs high computational overhead as shown in our analysis (§2).

Although we can deploy distributed sketch-based measurement

[11, 22] to boost performance, it still needs excessive computational

resources for parallelization.

TCAM: TCAM can be used to achieve high-performance network

measurement. Jose et al. [23] propose a TCAM measurement frame-

work based on OpenFlow [31]. DREAM [36] dynamically allocates

TCAM for high measurement accuracy. PathQuery [39] monitors

path-level traffic with TCAM. In contrast, our work address soft-

ware packet processing without specific hardware support.

Rule matching: Rule matching selectively processes only packets

of interest, thereby reducing measurement overhead. ProgME [57]

and EverFlow [62] filter flows based on pre-defined rules. Net-

Sight [21] leverages SDN to capture packets for specific forwarding

events. MOZART [29] and Trumpet [38] monitor network-wide

events with hash tables to achieve high throughput [1], by match-

ing flows to events and storing only matched flows in hash tables.

However, hash-table-based measurement incurs much higher mem-

ory overhead than sketch-based measurement (§7.6). Note that

rule matching requires careful configuration of matching criteria

to avoid compromising measurement accuracy.

9 CONCLUSION
We design and implement SketchVisor, a robust network-wide

measurement architecture for software packet processing, with a

primary goal of preserving performance and accuracy guarantees

even under high traffic load. SketchVisor employs sketches as basic

measurement primitives, and achieves high data plane performance

with a fast path to offload sketch-based measurement under high

traffic load. It further leverages compressive sensing to achieve

accurate network-wide measurement. Experiments demonstrate

that SketchVisor achieves high performance and high accuracy for

a rich set of sketch-based solutions.

ACKNOWLEDGMENTS
We thank our shepherd, Dina Papagiannaki, and the anonymous

reviewers for their valuable comments. We thank Jennifer Rexford

for comments on the earlier version of the paper.

REFERENCES
[1] O. Alipourfard, M. Moshref, and M. Yu. Re-evaluating Measurement Algorithms

in Software. In Proc. of HotNets, 2015.

[2] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting

Distinct Elements in a Data Stream. In Proc. of RANDOM, 2002.

[3] T. Benson, A. Akella, and D. A. Maltz. Network Traffic Characteristics of Data

Centers in the Wild. In Proc. of IMC, 2010.

[4] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese. An

Improved Construction for Counting Bloom Filters. In Proc. of ESA, 2006.

[5] Caida Anonymized Internet Traces 2015 DCaida. http://www.caida.org/data/

passive/passive 2015 dataset.xml.

[6] E. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal

reconstruction from highly incomplete frequency information. IEEE Transactions
on Information Theory, 52(2):489--509, 2006.

[7] E. Candes and T. Tao. Near-Optimal Signal Recovery From Random Projec-

tions: Universal Encoding Strategies? IEEE Transactions on Information Theory,

52(12):5406--5425, 2006.

[8] M. Charikar, K. Chen, and M. Farach-Colton. Finding Frequent Items in Data

Streams. Theoretical Computer Science, 312(1):3--15, 2004.

[9] Y.-C. Chen, L. Qiu, Y. Zhang, G. Xue, and Z. Hu. Robust Network Compressive

Sensing. In Proc. of MOBICOM, 2014.

[10] Cisco Nexus 1000V Switch. http://www.cisco.com/c/en/us/products/switches/

nexus-1000v-switch-vmware-vsphere/index.html.

[11] G. Cormode and M. Garofalakis. Sketching Streams Through the Net: Distributed

Approximate Query Tracking. In Proc. of VLDB, 2005.

[12] G. Cormode and M. Hadjieleftheriou. Methods for Finding Frequent Items in

Data Streams. The VLDB Journal, 19(1):3----20, 2010.

[13] G. Cormode and S. Muthukrishnan. What’s New: Finding Significant Differences

in Network Data Streams. In Proc. of IEEE INFOCOM, 2004.

[14] G. Crmode and S. Muthukrishnan. An Improved Data Stream Summary: The

Count-Min Sketch and its Applications. Journal of Algorithms, 55(1):58--75, 2005.

[15] X. Dimitropoulos, P. Hurley, and A. Kind. Probabilistic Lossy Counting: An

Efficient Algorithm for Finding Heavy Hitters. ACM SIGCOMM Computer Com-
munication Review, 38(1):5--5, 2008.

[16] M. Dobrescu, N. Egi, K. Argyraki, B.-g. Chun, K. Fall, G. Iannaccone, A. Knies,

M. Manesh, and S. Ratnasamy. RouteBricks : Exploiting Parallelism to Scale

Software Routers. In Proc. of SOSP, 2009.

[17] DPDK. http://dpdk.org/.

[18] C. Eckart and G. Young. The Approximation of One Matrix by Another of Lower

Rank. Psychometrika, 1(3):211--218, 1936.

[19] C. Estan and G. Varghese. New Directions in Traffic Measurement and Account-

ing : Focusing on the Elephants , Ignoring the Mice. ACM Trans. on Computer
Systems, 21(3):270--313, 2003.

[20] P. Flajolet and G. Nigel Martin. Probabilistic Counting Algorithms for Data Base

Applications. Journal of Computer and System Sciences, 31(2):182--209, 1985.

[21] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown. I Know

What Your Packet Did Last Hop: Using Packet Histories to Troubleshoot Net-

works. In Proc. of NSDI, 2014.

[22] Q. Huang and P. P. C. Lee. A Hybrid Local and Distributed Sketching Design for

Accurate and Scalable Heavy Key Detection in Network Data Streams. Computer
Networks, 91:298--315, 2015.

[23] L. Jose, M. Yu, and J. Rexford. Online Measurement of Large Traffic Aggregates

on Commodity Switches. In USENIX HotICE, 2011.

[24] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The Nature of

Data Center Traffic: Measurements & Analysis. In Proc. of IMC, 2009.

[25] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton, I. Ganichev,

J. Gross, P. Ingram, E. Jackson, A. Lambeth, R. Lenglet, S.-H. Li, A. Padmanabhan,

J. Pettit, B. Pfaff, R. Ramanathan, S. Shenker, A. Shieh, J. Stribling, P. Thakkar,

D. Wendlandt, A. Yip, and R. Zhang. Network Virtualization in Multi-tenant

Datacenters. In Proc. of NSDI, 2014.

[26] A. Kumar, M. Sung, J. J. Xu, and J. Wang. Data Streaming Algorithms for Efficient

and Accurate Estimation of Flow Size Distribution. In Proc. of SIGMETRICS, 2004.

[27] P. P. C. Lee, T. Bu, and G. Chandranmenon. A Lock-Free , Cache-Efficient Multi-

Core Synchronization Mechanism for Line-Rate Network Traffic Monitoring. In

Proc. of IPDPS, 2010.

[28] Y. Li, R. Miao, C. Kim, and M. Yu. FlowRadar: A Better NetFlow for Data Centers.

In Proc. of NSDI, 2016.

[29] X. Liu, M. Shirazipour, M. Yu, and Y. Zhang. MOZART: Temporal Coordination

of Measurement. In Proc. of SOSR, 2016.

[30] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman. One Sketch to

Rule Them All: Rethinking Network Flow Monitoring with UnivMon. In Proc. of
SIGCOMM, 2016.

[31] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,

S. Shenker, and J. Turner. OpenFlow: Enabling Innovation in Campus Networks.

ACM SIGCOMM Computer Communication Review, 38(2):69, 2008.

[32] Microsoft Hyper-V Virtual Switch. https://technet.microsoft.com/en-us/library/

hh831823.aspx.

[33] J. Misra and D. Gries. Finding Repeated Elements. Science of Computer Program-
ming, 2(2):143--152, 1982.

[34] M. Mitzenmacher. Compressed Bloom Filters. In Proc. of PODC, 2001.

[35] M. Mitzenmacher, R. Pagh, and N. Pham. Efficient Estimation for High Similari-

ties Using Odd Sketches. In Proc. of WWW, 2014.

[36] M. Moshref, M. Yu, R. Govindan, and A. Vahdat. DREAM: Dynamic Resource

Allocation for Software-defined Measurement. In Proc. of SIGCOMM, 2014.

[37] M. Moshref, M. Yu, R. Govindan, and A. Vahdat. SCREAM: Sketch Resource

Allocation for Software-defined Measurement. In Proc. of CoNEXT, 2015.

[38] M. Moshref, M. Yu, R. Govindan, and A. Vahdat. Trumpet: Timely and Precise

Triggers in Data Centers. In Proc. of SIGCOMM, 2016.

[39] S. Narayana, M. T. Arashloo, J. Rexford, and D. Walker. Compiling Path Queries.

In Proc. of NSDI, 2016.

[40] NetFlow. https://www.ietf.org/rfc/rfc3954.txt.

[41] OpenvSwitch. http://openvswitch.org.

http://www.caida.org/data/passive/passive_2015_dataset.xml
http://www.caida.org/data/passive/passive_2015_dataset.xml
http://www.cisco.com/c/en/us/products/switches/nexus-1000v-switch-vmware-vsphere/index.html
http://www.cisco.com/c/en/us/products/switches/nexus-1000v-switch-vmware-vsphere/index.html
http://dpdk.org/
https://technet.microsoft.com/en-us/library/hh831823.aspx
https://technet.microsoft.com/en-us/library/hh831823.aspx
https://www.ietf.org/rfc/ rfc3954.txt
http://openvswitch.org


SIGCOMM ’17, August 21−25, 2017, Los Angeles, CA, USA Huang et al.

[42] perf. http://perf.wiki.kernel.org.

[43] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Felter, K. Agarwal, J. Carter, and

R. Fonseca. Planck: Millisecond-scale Monitoring and Control for Commodity

Networks. In Proc. of SIGCOMM, 2014.

[44] B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed Minimum-Rank Solutions

of Linear Matrix Equations via Nuclear Norm Minimization. SIAM Review,

52(3):471--501, 2010.

[45] L. Rizzo. Netmap: A Novel Framework for Fast Packet I/O. In Proc. of ATC, 2012.

[46] R. Schweller, Z. Li, Y. Chen, Y. Gao, A. Gupta, Y. Zhang, P. Dinda, M. Y. Kao,

and G. Memik. Reversible Sketches: Enabling Monitoring and Analysis over

High-Speed Data Streams. IEEE/ACM Trans. on Networking, 15(5):1059--1072,

2007.

[47] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R. Kompella, and D. G. Andersen.

cSAMP: A System for Network-Wide Flow Monitoring. In Proc. of USENIX NSDI,
2008.

[48] V. Sekar, M. K. Reiter, and H. Zhang. Revisiting the Case for a Minimalist

Approach for Network Flow Monitoring. In Proc. of IMC, 2010.

[49] sFlow. http://www.sflow.org/.

[50] Snort. https://www.snort.org.

[51] SPAN. http://www.cisco.com/c/en/us/tech/lan-switching/switched-port-

analyzer-span/index.html.

[52] J. Suh, T. T. Kwon, C. Dixon, W. Felter, and J. Carter. OpenSample: A Low-

Latency, Sampling-Based Measurement Platform for Commodity SDN. In Proc.
of ICDCS, 2014.

[53] svdcomp. http://www.public.iastate.edu/∼dicook/JSS/paper/code/svd.c.

[54] K. Thompson, G. J. Miller, and R. Wilder. Wide-Area Internet Traffic Patterns

and Characteristics. IEEE Network, 11:10--23, 1997.

[55] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor. A Linear-time Probabilistic

Counting Algorithm for Database Applications. ACM Trans. Database Systems,
15(2):208--229, 1990.

[56] M. Yu, L. Jose, and R. Miao. Software Defined Traffic Measurement with OpenS-

ketch. In Proc. of NSDI, 2013.

[57] L. Yuan, C.-N. Chuah, and P. Mohapatra. ProgME: Towards Programmable

Network Measurement. In Proc. of SIGCOMM, 2007.

[58] ZeroMQ. http://zeromq.org.

[59] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On the Characteristics and

Origins of Internet Flow Rates. In Proc. of ACM SIGCOMM, 2002.

[60] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg. Fast Accurate Computation

of Large-Scale IP Traffic Matrices from Link Loads. In Proc. of SIGMETRICS, 2003.

[61] Y. Zhang, M. Roughan, W. Willinger, and L. Qiu. Spatio-Temporal Compressive

Sensing and Internet Traffic Matrices. In Proc. of SIGCOMM, 2009.

[62] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan, D. Maltz, L. Yuan,

M. Zhang, B. Y. Zhao, and H. Zheng. Packet-Level Telemetry in Large Datacenter

Networks. In Proc. of SIGCOMM, 2015.

Appendix A: Derivation of θ and e
We derive θ and e in ComputeThresh of Algorithm 1. Without loss

of generality, we denote the input k + 1 values as a1,a2, · · · ,ak+1
,

where a1 ≥ a2 ≥ · · ·ak+1
. We fit the inputs to a power-law

distribution; that is, for some random variable Y , we have Pr{Y >
y} = ϵyθ , where ϵ ≤ 1 and θ < 0 are some control parameters.

We are only concerned about the exponent θ for computing e , as

shown below.

To estimate θ , we only consider the two largest values a1 and

a2, which are the most likely to be the actual largest flows among

all flows being tracked in the hash table H . Their probabilities

can be described as Pr{Y > (a1 − 1)} = ϵ(a1 − 1)θ ≈ 1

n and

Pr{Y > (a2 − 1)} = ϵ(a2 − 1)θ ≈ 2

n , respectively, where n is the

number of total flows. By dividing the first equation by the second

one, we have
(a1−1)θ
(a2−1)θ ≈

1

2
. Thus, we estimate θ = logb ( 12 ), where

b = a1−1

a2−1
.

To compute e , we ensure that it is larger than the smallest value

ak+1
, so that we can always kick out the smallest flow among the

k + 1 inputs (i.e., the top-k flows in the hash table H and the new

flow); on the other hand, it cannot be too large to avoid kicking

out large flows. Thus, we compute e such that the probability of

kicking out any flow that is larger than ak+1
is no larger than some

small parameter δ (e.g., we can set δ = 0.05). The probability is

calculated as follows:

Pr{Y ≤ e | Y > ak+1
} = Pr{ak+1

< Y ≤ e}
Pr{Y > ak+1

}

=
Pr{Y > ak+1

} − Pr{Y > e}
Pr{Y > ak+1

} =
ϵaθk+1

− ϵeθ

ϵaθk+1

=
aθk+1

− eθ

aθk+1

.

Setting the right side to δ yields e =
θ√

1 − δak+1
.

Appendix B: Proof of Lemma 4.1
We prove the three properties of Lemma 4.1 (see §4).

(i) If flow f has size vf > E, it must tracked in H .

Our fast path algorithm decrements a flow by at most E after all

flow kick-out operations (lines 14-17 in Algorithm 1). For any flow

f with size vf > E, its residual counter rf is at least vf − E. Since

we only kick out a flow when its residual byte count reaches zero,

the flow must be tracked in H . The result follows.

(ii) If f ∈ H , rf + df ≤ vf ≤ rf + df + ef .
The first inequality holds because rf + d + f is the exact byte

count after f is inserted to H . On the other hand, the missing byte

count before f is inserted is at most ef . Thus, the total byte count

vf (including the byte counts before f is inserted and after f is

inserted) is at most rf + df +vf .

(iii) For any flow, its maximum possible error is bounded byO(Vk ).
The error of a flow f is less than ef ≤ E. Thus, we just need

to prove that E is bounded. Our proof assumes that our param-

eter estimation yields the same parameter θ , although the actual

estimated θ can vary (slightly).

We prove the result by computing the byte count that is decre-

mented in a kick-out operation. Since we select the threshold e
larger than the smallest value ak+1

, the actual decremented byte

count must be larger than ak+1
. If we use ak+1

as the threshold,

then the total decremented byte count is exactly (k + 1)ak+1
=

(k + 1) e
θ√

1−δ
. This implies that the actual decremented byte count

is at least (k + 1)ak+1
= (k + 1) e

θ√
1−δ

in a kick-out operation.

On the other hand, the total decremented byte count in all kick-

out operations should not exceed the total byte count V . Thus, we

have

∑
e (k + 1) e

θ√
1−δ
≤ V . Since E is the sum of e is all kick-out

operations (i.e., E =
∑
e e), we have E ≤ θ√

1 − δ V
k+1

. The result

follows.

Remark: We prove that the maximum possible error of any flow in

our top-k algorithm is at most
θ√

1 − δ V
k+1

. Note that this is slightly

larger than the worst-case error
V
k+1

of Misra-Gries’s algorithm.

However, all flows in Misra-Gries’s algorithm share the worst-case

bound
V
k+1

. In contrast, our algorithm estimates the per-flow lower

and upper bounds with three counters and the maximum error is

ef , which varies across flows. Our experiments show that our top-k
algorithm can achieve much smaller per-flow error bounds than

Misra-Gries’s algorithm in practice (§7.5). We leave the theoretical

analysis of average-case errors to future work.
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https://www.snort.org
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http://www.cisco.com/c/en/us/tech/lan-switching/switched-port-analyzer-span/index.html
http://www.public.iastate.edu/~dicook/JSS/paper/code/svd.c
http://zeromq.org
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