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Handwriting Recognition System Leveraging
Vibration Signal on Smartphones
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Abstract—The efficiency of human-computer interaction is greatly hindered by the small size of the touch screens on mobile devices,
such as smart phones and watches. This has prompted widespread interest in handwriting recognition systems, which can be divided
into active and passive systems. Active systems require additional hardware devices to perceive movements of handwriting or the
tracking accuracy is not adequate for handwriting recognition. Passive methods use the acoustic signal of pen rubbing and are
susceptible to environmental noise (above 60dB). This paper presents a novel handwriting recognition system based on vibration
signals detected by the built-in accelerometer of smartphones. The proposed scheme is implemented in three stages: signal
segmentation, signal recognition, and word suggestion. VibWriter is highly resistant to interferences since the normal environmental
noise (below 70dB) will not cause the vibration of the accelerometer. Extensive experiments demonstrated the efficacy of the system in
terms of accuracy in letter recognition (75.3%), word recognition (86.4%) and number recognition (79%) in a variety of writing positions
under a variety of environmental conditions.

Index Terms—vibration signal, handwriting recognition.
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1 INTRODUCTION

THE portability and high performance of smart phones
have brought convenience to people’s daily study and

work. Existing interaction methods based on smart phones
(buttons, touch screens, etc.) have problems such as easy
accidental touch and low input efficiency. Researches on al-
ternative interaction systems have focused on speech recog-
nition [1] and handwriting recognition [2], [3]. In the public
places such as offices, speech-based methods inevitably
disturb others, therefore the handwriting-based methods are
a better approach [3].

Most existing handwriting recognition methods can be
categorized as localization-based and scratch-based meth-
ods. Localization-based methods detect the movement of
the user’s hand or pen via inertial sensors [4] or wireless
signals, such as acoustic signal [5]–[7], WiFi signal [2], and
magnetic signal [8]. Methods based on WiFi signal [2] or
magnetic signal [8] have limitations for experimental sce-
narios. The acoustic-based tracking methods [5]–[7] achieve
millimeter-level tracking accuracy. Since the medium size
of letters in handwriting is 2.5 − 3.5mm according the
researches in graphology [9], these methods can still impair
the recognition accuracy. Scratch-based methods [3], [10],
[11] involve the detection of acoustic signals generated by
dragging a pen or finger across a surface, but these methods
are highly susceptible to environmental noise [3], [10], e.g.
the ambient noise in a cafe is about 61dB [11].

In this paper, we seek to overcome the shortcomings
of existing handwriting recognition schemes by developing
a system that uses the built-in accelerometer of the smart
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phone to detect the vibration signals generated by a pen
writing on the desk. VibWriter has no dependence on addi-
tional hardware and is more resistant to interference from
environment noise and vibrations. The system also demon-
strates outstanding recognition performance under different
conditions, such as different smart phones, different desks
and different writing regions.

The development of VibWriter imposes a number of
challenges:

(1) The sampling rate of the built-in accelerometer tends
to be low and lacking in stability. This imposes daunting
challenges in reconstructing and processing vibration sig-
nals from an input with limited bandwidth.

(2) The fact that the vibration signal indicating the start
of a new letter is usually generated by a tap or swipe makes
it difficult to differentiate between letters. Real-world writ-
ing scenarios also present numerous unexpected situations
prompting the user to write more quickly or more slowly.
Finally, a small time interval between letters can lead to
signal overlap, whereas a large time interval can hinder
signal separation.

(3) The removal of noise from the signal can be hindered
by variations in noise characteristics over time.

VibWriter addresses these issues using the corresponding
solutions listed below:

(1) Data missing from the vibration signal is recon-
structed using the spline interpolation algorithm. The
Xception module is used to extract deep features for the
residual architecture and depth-wise separable convolution
layers.

(2) A mean window is used to detect signal segments
that are characteristic of handwriting. The problems of
signal overlap and signal separation are dealt with by com-
bining information in the time and frequency domains and
selecting appropriate time for signal splitting and merging
based on changes in signal strength.
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(a) Vibration signal of volunteer 1.
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(c) Frequency spectrum of volunteer
1 with interferences.
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(d) Frequency spectra of volunteer 2.

Fig. 1. Preliminary experiments with Samsung S7 (495Hz): 1(a) and 1(b) Vibration signal and frequency spectrum generated by writing the letters
“C”, “X” and “Z” of volunteer 1; 1(c) Frequency spectrum of volunteer 1 with different interferences; 1(d) Frequency spectrum generated by writing
the letters of volunteer 2.

(3) We develop a dynamic denoising algorithm, which
uses the noise signal generated during idle periods as a
reference.

To the best of our knowledge, this is the first vibration-
based handwriting recognition system. The main contribu-
tions are summarized as follows:

(1) We demonstrate that the built-in accelerometer of
the smart phone provides the sensitivity and resolution
required for the detection of vibration signals generated by
handwriting.

(2) We develop the signal processing techniques re-
quired to deal with these vibration signals, including signal
construction, feature extraction, and feature classification.
We also resolve the problems of signal overlap and signal
separation.

(3) We build a light-weighted recognition network based
on knowledge distillation to further enhance the effective-
ness of the system.

(4) We implement VibWriter on an Android smart phone.
In experiments, the system achieves accuracy of 75.3% in
letter recognition, 86.4% in word recognition and 79% in
number recognition.

The remainder of this paper is organized as follows. In
Section. 2, we outline the preliminary experiments used to
verify the feasibility of recognizing handwriting via vibra-
tion signals. Section. 3 outlines the design of the proposed
system. Section. 4 outlines the underlying theory and tech-
nical details of each component in the system. Experiment
parameters and results are detailed in Section. 5. Limitations
are addressed in Section. 6. Related works are discussed in
Section. 7. Conclusions are drawn in Section. 8.

2 BACKGROUND

VibWriter uses the built-in accelerometer of a Samsung
S7 to detect vibration signals generated by the desk when
in contact with a pen. This section outlines preliminary
experiments aimed at answering the following fundamental
questions:

i) Do the vibration signals generated by the desk
produce characteristics of different letters?

In the first experiment, we seek to determine whether
the vibration signals generated by the desk produce char-
acteristics of different letters [12]. The accelerometer of
smart phone can achieve the sampling rate of approximately

500Hz [13], and even a small strokes of 0.1s can gener-
ate 50 samples. Therefore, we try to recognize different
handwriting letters with the vibration signal. One volunteer
is tasked with writing the letters “C”, “X”, and “Z”. As
shown in Fig.1(a), the exceedingly weak amplitude of the
vibration signals make it difficult to differentiate between
the three letters directly. Besides, different letters comprise
different numbers of strokes, as indicated by the spectrum
in which the letter “Z” comprises three strokes, the letter
“X” comprises two , and the letter “C” comprises only one
stroke (see Fig.1(b)).

ii) Do the different environments and users affect the
vibration signal?

In the second experiment, we first test the vibration
signals in different environments. When the volunteer is
writing, we add different vibration disturbances such as arm
movements and the fan. As shown in Fig.1(c), the vibration
caused by the fan and the movements of the user’s arm is
concentrated in the lower frequency band (below 200Hz),
and the high frequency part of the vibration signal can still
distinguish the strokes written by the volunteer. However,
the uncertainty of vibration interference distribution puts
forward the requirements for signal denoising.

Then, we invite another volunteer to write the letters as
shown in Fig.1(d). We can also distinguish the strokes of
the user from the spectrum. However, due to differences in
pauses, stroke order and strength in the writing process, the
differences in vibration signals make it difficult to popular-
ize signal recognition.

Preliminary experiments prove that based on the vibra-
tion signal, the user’s strokes can be recognized to dis-
tinguish handwriting in different environments. Nonethe-
less, it would be difficult to differentiate between all of
the letters based solely on the number of strokes. When
writing quickly, many letters would be indistinguishable
from others with the same number of strokes (e.g., “D”and
“P” or “C” and “O”). Besides, the stroke length is affected
by the writing size, making it difficult to directly extract
the individual stroke length and the length relationship
between the strokes. A feature extraction scheme is required
for letter recognition.

3 SYSTEM OVERVIEW

As shown in Fig. 2, VibWriter comprises three modules:
signal segmentation, signal recognition, and word sugges-
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Fig. 2. Overview of VibWriter.

tion. Vibration signals detected by the built-in accelerometer
are first sent to the signal segmentation module to be di-
vided into discrete segments. The signal recognition module
assembles the segments into letters and numbers. Finally,
the word suggestion module combines the letters into words
to be displayed on the smart phone. The three functions are
examined in greater detail below.

Signal segmentation: Data missing from the vibration
signal is reconstructed using the spline interpolation algo-
rithm. A peak detection algorithm based on mean win-
dow is then used to filter out the extraneous signals. The
problems of signal overlap and signal separation are dealt
with by combining information in the time and frequency
domain and selecting appropriate points for signal splitting
and merging based on changes in signal strength. The re-
sulting signal is then sent to the signal recognition module.

Signal recognition: A dynamic denoising algorithm re-
moves noise to facilitate the extraction of STFT features,
which are then sent to the classification module for the
extraction of deeper information using the concept of focal
loss to deal with difficult samples. The letters with the high-
est probability of matching the extracted features are then
output to be combined with previous candidate letters until
a word interval is detected. The resulting combination of
letter candidates is then forwarded to the word suggestion
module.

Word suggestion: The n-gram and edit distance algo-
rithms are used to deduce words with various length. Vib-
Writer improve the recognition performance at word level
and display the results to the user.

4 SYSTEM

This section details the overall system, including the
letter segmentation, letter recognition, and word suggestion
modules.

4.1 Signal Segmentation
As shown in Fig.1 the amplitude of the vibration signal

significantly differs from that of accelerometer-related noise.
Thus, our first objective is to compare the amplitude of the
signal with that of noise. Unfortunately, data acquisition in
real-world situations can lead to a number of issues, such as
inconsistent accelerometer sampling intervals, incomplete
data segmentation, letter concatenation, and interference

from other vibration sources. The proposed segmentation
algorithm deals with these issues in two stages: interpola-
tion and detection.

Interpolation: Obtaining the highest sampling rate from
the built-in accelerometer precludes the stable sampling rate
of raw data [13]. In most situations, more than half of the
vibration signals are missing, such that the actual number
of samples collected per second is roughly 490.

The accuracy of timestamps is 1ms. Therefore, the
ideal approach would involve upsampling the raw data to
1000Hz. This linear interpolation approach has previously
been used to stabilize the sampling rate [13]. However,
when the time interval exceeds 4ms, the complete cycle of
the signal (above 250Hz) is missing and cannot be recovered
via linear interpolation.

Our efforts to resolve the problem of sampling instability
led us to compare a variety of methods including those
based on interpolation [14] and reconstruction [15]. Methods
based on reconstruction infer the composition of the signal
within a certain frequency band in accordance with known
points under the constraints of the Nyquist Rate. However,
the high frequency part of the vibration signal lasts only a
few ms , which means that reconstruction-based methods
are only able to recover signals that fall within an extremely
narrow band due to the limited number of sampling points.
Methods based on interpolation use local sampling points
to recover the missing data, and are therefore not limited
by the length of the signal, resulting in superior real-time
performance.

We compare a variety of interpolation algorithms, in-
cluding spline interpolation, trigonometric interpolation
and linear interpolation, as shown in Fig.3(a). Real vibra-
tion data were obtained from the accelerometer (Grove
ADXL356C) in order to calculate the error corresponding
to the three interpolation algorithms. Spline interpolation
generates the corresponding quadratic function curve from
the derivatives of the sampling points. Therefore, spline
interpolation shows more effective than linear interpolation
in the recovery of lost data over extended time intervals, and
outperforms trigonometric interpolation in terms of how
well the recovered signal fits the original data. Furthermore,
the mean squared errors of the interpolation algorithms are
0.00468, 0.00585 and 0.00331 respectively.

Spline interpolation uses low-degree polynomials in
each interval, and selects polynomial pieces in a manner
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Fig. 3. Letter segmentation metrics: 3(a) Results of various interpolation methods: the red dots are the vibration signals (hollow dots are stable
samples, solid dots are unstable samples), the blue lines are the interpolation results; 3(b) Vibration signal (blue) and corresponding weighted
mean signal (red) showing different writing conditions: normal fast writing, an interruption during fast writing (with an interval during one letter)
and continuous writing (without interval between letters). The dotted line indicates the results of segmentation based on amplitude; 3(c) Proposed
solution to deal with signal separation and overlap caused by interruption and continuous writing.

that ensures a smooth fit when combined. For a unstable
sampling signal q(t) and known points (x1, y1), (x2, y2), the
third-order polynomial can be written as follows:

q(t) = (1−t(x))y1+t(x)y2+t(x)(1−t(x))((1−t(x))a+t(x)b)
(1)

where
t(x) =

x− x1
x2 − x1

a = k1(x2 − x1)− (y2 − y1)

b = −k2(x2 − x1) + (y2 − y1)

k1 = q
′
(x1)

k2 = q
′
(x2)

Detection: Generally, the tap of a pen on the desk sur-
face produces a distinctive vibration pattern indicating the
beginning of writing. However, in some situations where
the user seeks to write quietly, such as a meeting room, the
writing process begins with a swipe. This situation makes it
difficult to identify the start of writing. The signal produced
by a tap presents an abrupt change in amplitude, whereas
the amplitude of the signal produced by a swiping motion
grows gradually. The common approach to segmentation
often fails to identify vibration signals that begin with a
swipe [3], [10]. We calculate the mean value M(t) of the
vibration signal S(t) with the sliding window tw = 100ms.

Letter detection is based largely on three time thresholds
T1, T2 and T3, and three amplitude thresholds A1, A2 and
A3. T1 and T2 indicate the minimum and maximum lengths
of the letters, whereas T3 indicates the time interval between
words. A1 and A2 indicate the maximum and minimum
absolute values ofM(t), whereasA3 indicates the minimum
absolute value of interference. We use the time threshold
to constrain the signal length of letters and words, and
the amplitude threshold to judge the begin and end of the
signal.

Peak selection is based on the amplitude threshold,
where the start threshold is Mstart = 0.2 × A1 + 0.8 × A2

and the end threshold is Mend = 0.1×A1 + 0.9×A2.
In instances where the amplitude of M(t0) exceeds

Mstart, timestamp t0 indicates the start of a writing seg-
ment. As long as the user is writing in a normal manner, it

0.6 0.8 1.0 1.2
Time (s)

0
20
40
60
80

Sa
m

pl
e

(a) Length of letters.

0.2 0.4 0.6 0.8
Amplitude

0
20
40
60
80

Sa
m

pl
e

letters
interferes

(b) Amplitude of sig-
nals.

1.0 1.2 1.4 1.6
Time (s)

0
20
40
60
80

Sa
m

pl
e

(c) Length of intervals.

Fig. 4. Experiments on normal writing patterns in the time and amplitude
domains: 4(a) Time elapsed while writing letters of different users; 4(b)
Amplitudes of target signals and interference; 4(c) Intervals between
words of different users.

is possible to identify the end of a writing segment based on
Mend, as shown in Fig.3(b).

As shown in Fig.4(a), preliminary experiments show that
the handwriting time remains stable for most users. There-
fore, under normal circumstances, it can be assumed that the
users write in the block-letter style. However, we observe a
number of special situations in which the signal is difficult
to segment. In cases where the time interval between letters
is short, the vibration signals of different letters can overlap
in the time domain, due to the vibration signal lingering for
a few milliseconds after writing ceases. Signal separation
can also be hindered when the writing process is interrupted
and will cause the incomplete segmentation. Besides, there
are vibration interferences such as finger tapping on the
desk, which can also affect the signal detection.

First, We set tsegment as the length of the segment. If
tsegment > T2, the segment is identified as a combination
of two letter signals. T2 represents the maximum length of
a single letter according to our experiment in Fig.4(a). We
can locate a candidate split location, based on Min{M(t)}
in the time domain. As shown in Fig.1, the high frequency
components of the vibration signal are mainly concentrated
at the beginning of the signal. Combined with changes in
signal strength in the spectrum, we can define the point with
the weakest signal strength as the split point, as shown in
Fig.3(c).

If tsegment < T1, then it is designated a stroke of a
letter. T1 represents the minimum length of a single letter in
Fig.4(a). Due to the remaining effect, the simple stitching of
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Fig. 6. Word suggestion results: 6(a) Distribution of words of various
lengths among the 5000 most common words in COCA; 6(b) and
6(c) Accuracy in word identification respectively using N-gram and Edit
Distance algorithms.

two segments is not good choice. Based on the observation
of the spectrum above. We can define the point with the
weakest signal strength as the merge point, so as to remove
the remaining effect of the segment, as shown in Fig.3(c).

Then, we set asegment as the maximum amplitude of the
segment. If asegment > A3, then it is designated the vibra-
tion interferences. A3 represents the distinguishing thresh-
old between handwriting signal and vibration interference.
Since the amplitude of segments differ considerably from
the interference according to preliminary experiments, as
shown in Fig.4(b). We will discard vibration segments with
amplitudes above the threshold. Although this may cause a
loss of handwriting signal, this type of interference will not
occur frequently. In addition to large vibration disturbances
such as knocking on the desk, minor disturbances such as
common fans and keyboards on the desk will also affect
the system. We can attenuate this type of interference by
spectral subtraction. We further analyze these interferences
in Section.5.3.

Finally, as shown in Fig.4(c), the length of intervals
between words tends to be uniform under normal writing
conditions. Thus, intervals exceeding T3 are designated as
the end of a word, and T3 represents the distinguishing
threshold between letters and words.

4.2 Signal Recognition
Preprocessing: We adopt Short-time Fourier Transform

(STFT) to generate features in the frequency domain. The

vibration signals of the three axes are converted into a STFT
matrix representing the magnitude and phase of each frame
and frequency, as follows:

STFT{x[t]}(m,ω) ≡ X(m,ω) =
+∞∑

n=−∞
x[n]ω[n−m]e−jωn

(2)
where ω represents the frequency of window function, and
m represents the scale of window function.

The sampling rate of the built-in accelerometer (1kHz)
is far lower than the acoustic signal of handwriting [3], [10],
[11], [16], and the spectral distribution of signals and noise
is similar. As shown in Fig. 1, the amplitude of noise signals
below 100Hz far exceeds that of higher frequency signals.
Furthermore, signals associated with ambient noise do not
remain stable throughout the writing process. Thus, noise
removal should be a dynamic process implemented only
at specific time points. We develop a dynamic denoising
algorithm, which identifies noise based on a reference signal
collected during idle periods. We begin by establishing a
noise sample Ŝnoise = [s1, s2, ..., sl], and then update the
sample as:

Ŝnoise =
1

N

N∑
i=1

Snoisei (3)

where l indicates the length of the noise sample according to
different handwriting segments. Snoise preserves the noise
signal between letters and words, and N represents the
number of samples in Snoise. Then, we can denoise the
signal with the spectrum subtraction [17]:

‖Y (k)‖2 = ‖Ssignal(k)‖2 − ‖Ŝnoise(k)‖2 (4)

where k represents the frequency range of the signal,
Ssignal(k) and Ŝnoise(k) represent the handwriting sample
and the noise sample respectively. For each signal, we use
the latest noise signal to update the noise sample.

Classification: Convolutional neural network (CNN)
have proven highly effective in spectrum classification [3],
[10], [18]. The spectral width of vibration signals is far
narrower than acoustic signals. Therefore, the module have
to extract handwriting features at various scales, (e.g., single
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taps, single strokes, and entire letters). As shown in Fig.5,
the Xception model [19] takes advantages of ResNet [20]
and Inception [21]. As the model gets deeper, problems
such as gradient disappearance arise. The residual structure
in Xception (the arcs in the Basic Block) effectively solves
this problem and enables features of different depths in the
model to be fused. Second, the deepening of the model
inevitably increases the computational burden on the hard-
ware. the Xception model uses an Separable Convolution
(the yellow layer in the Basic Block), which splits the normal
convolution into two parts: Channel-wise Convolution and
Point-wise Convolution. Channel-wise Convolution extracts
features separately for individual channels in the feature,
and Point-wise Convolution aggregates the feature points in
different channels by 1×1 convolution. Thus, the n×n×m
parameters (m represents the number of channels) required
for ordinary convolution are reduced to n× n+m.

To further improve the accuracy of the model, we em-
ploy Focal Loss to facilitate learning using difficult samples
as follows [22]:

FL(pt) = −α(1− pt)γ log(pt) (5)

where pt represents the output of the model, α and γ
are correlation coefficients. α(1 − pt)

γ reverses with the
difficulty of sample, so as to strengthen the difficult samples.

Light-weighted Model: Even though Xception reduces
the computational burden of the model by using the vol-
ume machine layer, further compression of the model is
needed to achieve higher effectiveness. We propose the
Xception light model based on the Xception model.

To achieve a lightweight classification model while
maintaining generalization capabilities, Xception light uti-
lizes the idea of knowledge refinement to transfer knowl-
edge from a large and cumbersome model to a small model
[23]. In V ibWriter, the classification network in Fig.5 can
be seen as a trained teacher network that imparts features of
different handwriting contents to a small student network,
as shown in Fig.7. Compared with the teacher network, the
student network compresses the eight basic modules in the
middle of the Xception model into one. As a result, the
computational effort of the student network is reduced by
more than half compared to the teacher network.

Specifically, the training of the student network con-
sists of two phases. In the first training phase, the teacher
network is trained and the features output by the teacher
network are extracted, Ft. Then, the student network is
trained with the features generated by the teacher network
as the target, and the features generated by the student
network are written Fs. The loss function in the first phase
is the cross entropy of the output features of the two models:

L(Fs) = −
∑
i

Ft × log(Fs) (6)

In the second training phase, the student network uses
handwriting samples to refine the parameters of the net-
work. The loss function still uses Focal Loss.

4.3 Word Suggestion
We notice the fact that users often write a word rather

than a single letter. Therefore, we develop a word sugges-
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Fig. 7. Architecture of knowledge distillation.

tion algorithm to enhance handwriting recognition perfor-
mance at the word level.

N-gram algorithm Language models are widely used in
natural language processing (NLP), such as text categoriza-
tion [24] and machine translation [25]. We employ the N-
gram to determine the probability distribution of letters in
words. The chain rule of letters is defined as follows:

P (ω1, ω2, ..., ωn) = P (ω1)P (ω2|ω1) · · ·P (ωn|ω1, ..., ωn−1)
(7)

where ωi, i ∈ [1, n] represents the letter in the word. The
conditional probability of each letter occurrence is calcu-
lated in terms of maximum likelihood, as follows:

P (ωi|ω1, ..., ωi−1) =
C(ω1, ω2..., ωi)∑
ω C(ω1, ω2..., ωi, ω)

(8)

where C(·) represents the number of times a string ap-
pears in the dataset. Obviously, it would be unrealistic to
directly calculate P (ωi|ω1, ..., ωi−1) based directly on max-
imum likelihood estimation. Assuming that the probability
of current letter occurring depends only on the the first n−1
letters, we obtain the following result:

P (ωi|ω1, ..., ωi−1) = P (ωi|ωi−n+1, ..., ωi−1) (9)

Based on the above formula, the 3-gram language model is
defined as follows:

P (ωi|ω1, ..., ωn) =
n∏
i=1

P (ωi|ωi−1, ωi−2) (10)

Edit distance It can be noted that accuracy in correcting
misspelled words is closely related to the lengths of the
words. As shown in Fig.6(b), when the length exceeds five
letters, the accuracy of word suggestion schemes decreases
significantly. Thus, we analyzed the length distribution of
the 5000 most commonly used words in the Corpus of
Contemporary American English (COCA) in Fig.6(a). The
words exceeding 6 letters make up more than half of the
total; therefore, we focus on longer words using the edit
distance algorithm.

Edit distance refers to the minimum number of editing
operations required to change from one string to another
[26]. Permitted editing operations include replacing one
character with another, inserting one character, and deleting
one character. The shortest edit distance between the first
i characters of string a and the first j characters of string b
can be written as Leva,b(i, j). The recursive formula used
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10cm

Fig. 8. Experimental Setup.

to determine the edit distance between two strings is as
follows:

Leva,b(i, j) =



max(i, j) ifmin(i, j) = 0

min

Leva,b(i− 1, j) + 1
Leva,b(i, j − 1) + 1
Leva,b(i− 1, j − 1)

 ai = bj

min

 Leva,b(i− 1, j) + 1
Leva,b(i, j − 1) + 1

Leva,b(i− 1, j − 1) + 1

 ai 6= bj

(11)
As shown in Fig.6(c), the edit distance greatly improve

accuracy in correcting spelling errors in long words. Thus,
we employ the N-gram algorithm for words of less than five
letters and edit distance for longer words.

5 EVALUATION

5.1 Experimental Setup

Hardware. VibWriter is implemented on a Samsung S7
and a MacBook Pro (Intel Core i9 CPU@2.3GHz and 16GB
RAM) is implemented as the server. Based on the built-in
accelerometer1, we can achieve a sampling rate of about
490Hz [13], [27]. We conduct our experiments in the normal
laboratory. As shown in Fig.8, we collect the training set and
test set on a wooden desk. The smart phone is placed in the
center of the desk, perpendicular to the lower edge of the
desk. The writing region is located 10cm to the right of the
smart phone.

Letters and numbers. We first invited 10 volunteers to
write a sample of 26 uppercase letters and 10 numbers with
a gel pen to create the dataset. Two of the volunteers wrote
the letters and numbers 80 times each, while the remaining
volunteers wrote the letters and numbers 40 times each. All
volunteers wrote directly on the table at their own speed,
strength and in any order they wished. For each volunteer,
we selected 20 samples from the collected letter and number
datasets as the test set, and the remaining samples were
used as the training set for cross-validation to test the
system’s letter and number recognition ability.

1. We use a third-party application AccDataRec for diaplay.

Words. Volunteers were asked to write a random article
(about 100 words) from New Concept English to create a
test set of word to test the accuracy of the system’s word
suggestion.

Parameter. For segmentation, we set the minimum and
maximum length of letters T1 = 0.4s , T2 = 1.5s , minimum
time of the word interval T3 = 1s and the minimum
absolute value of interferences A3 = 0.4 according to our
experimental observation in Fig.4. We introduce the param-
eters in details in Section.4.1. For letter recognition, we set
the segment and the overlap of STFT at 128 and 120. Finally,
we set the Focal Loss coefficients α = 0.2 and γ = 3 [22].

Training. For the teacher network: Xception, we set the
batch size at 32 for 40 epochs with Adam algorithm (learn-
ing rate of 0.0008). For the student network:Xception light,
we set the batch size at 32 for 20 epochs with Adam algo-
rithm (learning rate of 0.0008) for knowledge distillation,
and set the batch size at 16 for 20 epochs with Adam
algorithm (learning rate of 0.0004) for classification. For each
volunteer, we build a handwriting recognition model. We
trained the models in three steps. First, we trained the base
model using a training set of volunteers who write letters
and numbers 60 times.Then, we fine-tuned the base model
using the training set of each volunteer to build the teacher
model for each volunteer. Finally, we built the student
model for each volunteer based on the teacher model using
knowledge distillation. Besides, we build the recognition
models for letters and numbers separately.

5.2 Micro Benchmarks
In this section, we evaluate the performance of three

main components of VibWriter.

5.2.1 Signal Segmentation
First, we evaluate the accuracy of the system in terms of

letter segmentation, as shown in Fig.9(a). The segmentation
algorithm outlined in Section.4.1 prove highly effective in
dealing with signal overlap and signal separation. However,
there are some cases that fluctuations in the vibration sig-
nals are too weak to detect. Those situations are deemed
segmentation failures. The average accuracy results in the
segmentation of letters, numbers and words were 98.07%,
98.3% and 97.5%, respectively. Overall, this degree of accu-
racy should suffice for most practical applications.

5.2.2 Signal Recognition
We use the top-1 output of the network as the recogni-

tion result. As shown in Fig.9(e) and Fig.9(f), the average
accuracy in letter and number recognition is 75.3% and
79%. Analysis of misclassification reveals that around 20%
of the letters ”K” and ”N” are misidentified as ”R” and
”V”, respectively. Clearly, a word suggestion algorithm is
required to achieve reasonable recognition performance.

Xception light is compared with other classification
methods, including LeNet, AlexNet, ResNet and Inception.
As shown in Fig.9(c), the accuracy of Xception light is far
higher than that of the other classification algorithms. We
also seek to reduce the number of training sets via model
fine-tuning of the teacher network: Xception, as shown in
Fig.9(d).
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Fig. 9. Accuracy of the VibWriter system.

angle

Fig. 10. Angle of the smart phone.

5.2.3 Word Suggestion
The performance of the VibWriter system using the

N-gram algorithm for short words and the edit distance
algorithms for longer words is verified by counting the
number of correct words suggestions. As shown in Fig.9(g),
the proposed algorithms achieve overall accuracy of 86.4%
for words of various lengths. The inter-user accuracy of
the system is shown in Fig.9(b). As shown in Fig.9(h),
without the word suggestion algorithms, the average overall
accuracy in word recognition is only 12.7%.

5.3 Macro Benchmarks

In this section, we evaluate the performance of VibWriter
under a variety of conditions. In each experiment, we vary
only one variable, such as the writing distance, writing
angle, writing angle, etc.

5.3.1 Writing Location
The distance between the smart phone and the hand-

writing region is experimented by moving the phone in a
horizontal direction, in a range of 5cm to 120cm from the

handwriting region. During this process, the angle of the
phone is not changed. Then, the phone is then placed back in
its original position (10cm to the left of the handwriting re-
gion) and the angle of the phone is changed. The volunteers
are tasked with writing the same words as test set. Overall,
VibWriter achieves high accuracy in terms of handwriting
recognition regardless of the distance and angles between
the writing position and the smart phone, as shown in
Fig.11(a) and Fig.11(b).

5.3.2 Vibration Interference
Unlike the interference discussed in Section.4.1, the dis-

turbances of minor vibrations could potentially interfere
with VibWriter, such as the vibration of the desktop fan,
people walking around, tapping on the keyboard, etc. We
evaluate each of these Interference separately. The desktop
fan is placed on the desk at a distance of 5cm from directly
above the smart phone to simulate interference from elec-
tronic devices. Besides, two volunteers are asked to walk
around the desk or tap the keyboard on the desk to simulate
the other two interferences. The keyboard is placed 20cm to
the right of the writing region. Then, the other volunteers
are tasked with writing the same words as test set.

As shown in Fig. 11(c), vibration interference have an
impact on the vibration signal. Nonetheless, the dynamic
denoising algorithm (described in Section. 4.2) is able to
maintain number recognition accuracy (above 69%) and
word recognition accuracy (above 75%). Clearly, VibWriter
is robust to most of the vibration-related interference com-
monly encountered in the real environments.

5.3.3 Different Phones
Since the size and weight of the smart phone could

conceivably affect the vibration signal. Furthermore, sensors
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Fig. 11. Evaluation of VibWriter under different conditions.
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Fig. 12. Evaluation of VibWriter under different conditions.

vary in terms of sampling rates. We verify the performance
of the system application on different phones while keeping
the phone position, writing position and other conditions
constant. The volunteers are tasked with writing the same
words as test set. As shown in Fig.11(d), VibWriter work well
on a wide variety of smart phones.

5.3.4 Different Desks
Different properties of the task may affect the vibration

signal, such as the roughness, thickness and size of the
desk. Thus, we conduct an experiment in which volunteers
are tasked with writing the same words as test set on
four smooth and four rough desks. Besides, for the desks
with the same roughness, different sizes and thicknesses are
chosen for the experiment. We place the smart phone in the
center of the different desks, with the writing position and
other conditions remaining the same. The results in Fig.12(a)
indicate that VibWriter is applicable to a wide range of desks.
The horizontal vibration information of a smooth desk is
weak, but they can achieve the number recognition accuracy
(above 63.3%) and word recognition accuracy (above 71%).

5.3.5 Different vibration sources
The vibration signal generated by writing is closely re-

lated to the vibration source, such as different pens (include
gel pen, pencil and stylus), different medium (include a
piece of A4 paper and notebook) and desk material (include
wooden, glass and metal). The volunteers are tasked with
writing the same word as the test set under different con-
ditions. We verified different pens, medium and desk ma-
terials separately. We also kept the phone position, writing
distance and other conditions constant.

As shown in Fig.12(b), the accuracy of the stylus is signif-
icantly lower than that of hard pens, because the vibration
signal generated by the softer tip is weak. Therefore, we do
not recommend writing with stylus.

Fig.13(a) gives the results of different medium, the re-
sults show that notebook has worst accuracy of 12% (num-
ber) and 14.5% (word). Since the medium between the pen
tip and the desk will seriously affect the propagation of the
vibration signal, especially when the contact between the
medium and the desk is loose or spaced, the vibration signal
may be completely isolated.

The different desk materials also affect the recognition
accuracy, as shown in Fig.13(b). Wooden desks are usually
rough, whereas glass and metal desks are smoother and
produce vibration signals of lower amplitude than wooden
desks.

5.3.6 Vibration damping
Placing objects between the writing region and the smart

phone inevitably affects the transmission of vibration sig-
nals. Thus, we experimentally evaluate the effect of desktop
loading on the propagation of vibration signals. We place
objects of various weights (but similar contact area) between
the writing region and the phone to simulate the different
loads on the desktop, such as a pack of tissues (0.25kg) and
a stack of books (5kg). As shown in Fig.13(c), VibWriter is ba-
sically unaffected by the damping effects of the lightweight
objects, and Heavy objects (e.g., books) can effectively block
the transmission of signals. Therefore, when interacting with
VibWriter, users can protect their privacy by placing a heavy
object near the writing position.

5.3.7 Environment Noise
Acoustic noise in the surrounding environment is a

type of vibration signal, which could conceivably affect the
signals detected by the accelerometer [27], [28]. Thus, we
evaluate the robustness of VibWriter to ambient noise. The
results in Fig.13(d) demonstrate that VibWriter is largely
unaffected by environmental noise (below 70dB). Realistic
environments such as cafes have a noise level of about
61.5dB [11], therefore VibWriter can be applied in different
realistic environments.

5.4 System Evaluation
5.4.1 Responsiveness

Latency (delays in system response) is a crucial issue
in real-time input systems. In assessing the responsiveness
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Fig. 13. Evaluation of VibWriter under different conditions.

of the overall system, we measure the time that elapsed
between receiving a signal and outputting a result. The aver-
age latency in recognizing letters and numbers is 54ms. The
average latency in recognizing different words is 239ms.
These results indicate that the responsiveness of VibWriter is
sufficient for real-time operations.

6 DISCUSSION

Implement on smart watches. Due to hardware limita-
tions, the sampling rate of accelerometers in smart watches
is approximately 100Hz. Coarse-grained data cannot be
used to identify the user’s writing. While we believe that
as smart watches continue to be updated, VibWriter can be
applied to smart watches and other mobile devices.

Sampling rate of smart phones. Taking an Android
phone as an example, setting the highest sample rate
(SENSOR DELAY FASTEST ) [13] is able to reach a
sampling rate of 400Hz to 500Hz. However, high fre-
quency sampling depends on the operating state of the
system, and the sampling interval will increase when
the system is busy, leading to the problem of unstable
sampling rate. Besides, the second highest sampling rate
(SENSOR DELAY GAME) has a delay of 20ms, and
the accelerometer has a sampling rate of 50Hz and a band-
width of 25Hz, which cannot be used to recognize the
handwriting letters.

7 RELATED WORK

In this section, we discuss the existing representative
works. According to different ways of obtaining hand-
writing information, the existing methods can be roughly
divided into three categories:

7.1 Vision-based Methods

Vision-based methods obtain handwriting inputs in the
form of picture and then use machine learning (e.g., con-
volution neural networks) [29], [30] to perform recognition
tasks. The main problem associated with this method is the
need to interrupt the writing process to capture the image.
VibWriter will not burden the user with other operations
during the continuous collection process.

7.2 Localization-based Methods

The main idea of localization-based method is to recover
the user’s writing trajectory by tracking hand or pen in
the space during the writing process. The major approaches
ever used are motion-based and wireless signal-based.

Motion-based methods. These methods usually need
to adopt embedded devices with built-in sensors such as
gyroscope and accelerometer. [31] utilized the gyroscope
and accelerometer built in the smart watch to track the
movement of the user’s hand. GyroPen [32] treated smart
phones as pens, and the built-in sensors are used to track
the user’s actions and recognize the handwriting letters.
Pentelligence [4] integrated the microphone and accelerom-
eter into an electronic pen, combining the sound of writing
with the moving information of the pen to recognize the
user’s handwriting. DeWristified [33] verified the security
of the handwriting recognition system based on the built-in
motion sensor of the wearable device.

Wireless signal-based methods. Wireless signal-based
methods use wireless signals to sense the movements of
the user’s hand or pen, such as light, Wi-Fi and magnetic
signal. WiReader [2] used Wi-Fi signal to sense the move-
ment of user’s hand based on Channel State Information.
MagHacker [8] used the magnetic sensor built into smart
phones to detect changes in the magnetic field of stylus dur-
ing the writing process. Acoustic-based tracking methods
[5]–[7], [34]–[37] achieved millimetre-level tracking accu-
racy, the tracking error can increase as the writing distance
increases. [7] showed that the error increases from 5mm
to 15mm while the distance increases from 10cm to 40cm.
According to the researches in graphology [9], the medium
size of handwriting letter is 2.5 − 3.5mm. Therefore, these
methods can still impair the recognition accuracy [18], [38].
As a comparison, VibWriter uses the built-in accelerometer
of the smart phone. During the evaluation, the size of hand-
writing letters is around 5mm and the recognition accuracy
remains similar across distances from 10cm to 60cm.

7.3 Scratch-based Methods

Scratch-based handwriting methods use the acoustic sig-
nal caused by the friction during handwriting process [3],
[10], [11], [16], [39]–[41]. [39] first presented the handwrit-
ing recognition system based on the acoustic signals and
achieved a recognition accuracy of about 80%. SoundWrite
[16] implemented a handwriting recognition system based
on acoustic signals on the mobile phone. WordRecorder
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[10] used the spectrum diagram of the acoustic signals of
single letter. WritingRecorder [3] designed the Inception-
LSTM module to extract deep local features and time-series
relations between frames. Ipanel [11] found that the acoustic
signals caused by finger sliding against the desk depend on
different movements. However, the scratch-based methods
are sensitive to ambient noise, and the recognition accuracy
decreases significantly when the noise is above 60dB. Specif-
ically, WordRecorder [10] showed the letter recognition ac-
curacy is reduced by 37% from 79.8% to 50% with 60dB
noise (while that of VibWritter is 75.3%); WritingRecorder [3]
showed the word recognition accuracy is reduced by 19.8%
from 92.8% to 74.4% with 65dB noise (while that of VibWrit-
ter is 86.4%). On the other hand, VibWriter is robust against
both environmental sound noise and vibration noise.

7.4 Vibration-based application

Vibration signals are closely related to daily behaviors,
such as walking [42], [43], talking [13], [27], [28] and authen-
tication [44]–[46]. FootprintID [42], [43] used the vibration
signal of the floor when walking to identify different users.
(sp)iPhone [47] used the built-in accelerometer of the smart
phone to recognize text entered on a nearby keyboard.
Lamphone [28] used The weak vibration of acoustic signal
on the bulb to establish the the acoustic signal. Spearphone
[27] and paper [13] used the effect of the phone’s built-in
speaker on the built-in accelerometer to steal the acous-
tic signal through the vibration signal. SurfaceVibe [12]
proposed a vibration-based interaction tracking system for
multiple surface types. [44], [45] enabled user authentication
by means of user characteristics sensed by vibration signals.

8 CONCLUSION

This paper introduces a novel handwriting recognition
system based on vibration signals. The proposed VibWriter
system is able to overcome instabilities in sampling rates
and does not require external hardware devices. Extensive
experiments demonstrated the efficacy of the system in
terms of recognition accuracy in letter (75.3%), number
(79%) and word (86.4%) in a variety of positions under a
variety of environment conditions.

In future work, we will extend the system to include
lowercase letters, and develop a recognition system that
runs entirely on the smart phone. Additional methods will
be included to improve the recognition accuracy, including
sentence-based suggestion and the fusion of vibration sig-
nals with other sensors, such as acoustic signals and gy-
roscope signals. We will also explore the user-independent
features in the vibration signal of handwriting to explore
the feasibility of handwriting stealing based on the vibration
signal.
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