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Abstract— Acoustic tracking technology, leveraging the ubiq-
uitous presence of speakers and microphones in commercial
off-the-shelf (COTS) mobile devices, has become a versatile
tool across various applications. However, current phase-based
acoustic tracking methods encounter significant limitations in
tracking fast movements, thereby restricting their practical
utility. This paper identifies three practical challenges to enable
fast hand motion tracking using acoustic signals: 1) high mobility,
2) low signal-to-noise ratio (SNR), and 3) variations in hardware
frequency response. The high mobility introduces Doppler shift
and phase ambiguity which is the primary cause of failure
in fast movement tracking, while the latter two factors can
further impair the tracking performance in practical scenarios
involving high mobility. To address the high mobility issue,
we effectively compensate the Doppler shift in the Channel
Impulse Response (CIR) for better selection of channel taps
and then propose a novel phase derivative approach to mitigate
the phase ambiguity. To enhance the real-world robustness,
we integrate multiple algorithms including an SNR enhancement
algorithm inspired by time-domain beamforming and a hardware
frequency response compensation approach that addresses both
amplitude and phase distortions. Additionally, an LSTM-based
distance reconstruction algorithm is further implemented to
correct residual phase noise. Implemented on Android platforms
under the name SWIFTTRACK+, our system demonstrates supe-
rior performance in tracking fast movements. Through extensive
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evaluations, SWIFTTRACK+ proves its efficacy across diverse
scenarios, significantly broadening the scope and reliability of
acoustic tracking applications.

Index Terms— Acoustic motion tracking, acoustic sensing, fast
motion tracking, SNR enhancement.

I. INTRODUCTION

DEVICE-FREE acoustic tracking technologies hold the
potential to revolutionize a myriad of applications. These

include motion-based gaming, Augmented Reality (AR), Vir-
tual Reality (VR), touchless user interfaces (UIs) for the
Internet of Things (IoT), and also applications in health
monitoring like breathing and heart-rate tracking, as well as
indoor localization.

The recent advancements in this field have led to a plethora
of device-free acoustic tracking algorithms. These can be
categorically divided into four primary types: time-of-arrival
(TOA) based [2], [3], [4], [5], Doppler based [6], [7], [8],
Frequency-Modulated Continuous-Wave (FMCW) based [9],
[10], and phase based [11], [12], [13], [14], [15]. Among these,
the resolution of TOA, Doppler, and FMCW based approaches
is generally constrained by the sampling rate and bandwidth.
In contrast, phase-based tracking stands out due to its higher
resolution capabilities; for example, a mere 1mm movement
can result in a 0.74 radian phase change in device-free tracking
at 20KHz.

However, the direct use of signal phase at each sample
is often challenged by multipath effects. To address this,
Strata [12] introduces a novel method that estimates the
channel impulse response (CIR), by calculating the channel
coefficient for each channel tap to separate the multipath
signals and utilizing the phase of a suitable channel tap for
motion tracking in each signal frame. This approach has since
inspired several notable extensions in the field, such as [13],
[16], [17], [18], and [19].
Limitations of Existing Work: Though phase measurement
in acoustic tracking offers high accuracy, our extensive exper-
iments reveal a fundamental limitation: current phase-based
tracking methods struggle with fast movements, significantly
constraining their applicability. As illustrated in Fig.1(a), sys-
tems like Strata [12] are effective under slow motion. However,
as depicted in Fig.1(b), these systems exhibit high errors or
even inverse directionality when movement speed exceeds a
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Fig. 1. An example of the rapid motion problem. (a) When user’s finger is
moving with speeds below the limit, the phase-based tracking schemes can
estimate the trajectory accurately. (b) Once the moving speed exceeds the
limit, tracking accuracy degrades significantly.

specific threshold, such as 0.8m/s. This issue is not unique to
Strata; other methods like LLAP [11] and VSkin [13] also face
performance decline at higher speeds, functioning only below
0.25m/s and 0.12m/s, as reported respectively. This poses
a significant problem as human movement typically ranges
between 1.5 − 2m/s, with peak speeds around 2.7m/s as
reported by [20], [21], and [22]. Currently, no acoustic-based
tracking method effectively supports speeds beyond 1m/s in
a device-free sensing system.

Delving deeper into the fast movement issue, we observe
it intersects with other challenges in acoustic sensing, notably
low SNR and uneven hardware frequency response. The rapid
attenuation of reflected signals over distance results in low
SNR beyond 1m in commercial off-the-shelf (COTS) smart-
phone setups. Tracking performance deteriorates significantly
beyond this range due to phase error accumulation [23].
Existing methods [14], [24], while not ideally suited for high
mobility scenarios, often rely on microphone arrays for spatial
beamforming, a feature not typically available in COTS mobile
phones. Furthermore, uneven frequency response of speakers
and microphones distorts the received signal. Previous studies
(e.g., [25], [26]) have identified the heterogeneous nature of
inaudible acoustic frequency response and suggested com-
pensating for amplitude. However, our findings highlight that
discrepancies in both amplitude and phase contribute to this
issue. These distortions in the received signals substantially
impact tracking accuracy.

Gaming applications, particularly in AR/VR or on mobile
devices, often necessitate the capability to monitor human
arm motions (moving speed up to 2.7m/s) in the device-free
manner. Existing acoustic sensing systems, however, struggle
to support fine-grained tracking at higher speeds of movement
(only effective for speed lower than 0.8m/s). This paper aims
to enable the tracking of fast motions of human arms using
acoustic signals on COTS mobile devices, thus extending the
scope of acoustic sensing in practical applications. To realize
this goal, we address two primary challenges: (i) unraveling
the root causes of limitations in fast motion tracking and
devising effective solutions, and (ii) proposing a series of
techniques, including SNR enhancement, uneven hardware
frequency response compensation and LSTM-based distance
recovery, to enhance the robustness and reliability of tracking
under fast movement conditions in real-world scenarios.

Our Approach: Our in-depth analysis of fast movement traces
has led to several key observations and solutions. Firstly,
rapid movement often results in a phase change exceeding π
between consecutive updates, causing phase under-sampling
and, consequently, phase ambiguity. To address this, we have
developed a novel approach using phase derivatives, effec-
tively circumventing the under-sampling problem. We formally
show that the ambiguity of phase derivative is determined by
the acceleration instead of the velocity and that the target’s
acceleration wraps around at a much higher threshold (above
the peak acceleration of human arms) than the velocity and
hence is more robust against the high mobility issue. Secondly,
fast movement introduces Doppler shift, altering the phase
change. We have crafted a simple yet effective technique for
the real-time estimation and compensation of Doppler shift in
the CIR on mobile devices.

To enhance the robustness of fine-grained tracking in prac-
tical scenarios involving rapid movements, we’ve designed
a series of algorithms: (i) For mitigating low SNR issues,
we employ a strategy inspired by time-domain beamform-
ing [24], where we enhance SNR through the constructive
addition of CIR profiles. This necessitates the accurate esti-
mation and compensation of phase changes resulting from
movement during measurement, for which we have developed
a practical method based on the maximum entropy principle,
even with a single microphone. (ii) Addressing hardware
frequency response, we go beyond the typical approach of
merely compensating for amplitude. Our systematic analysis
underscores the necessity of compensating for the phase
response due to its lower noise sensitivity. Thus, we propose
a dual compensation method that addresses both phase and
magnitude aspects of the frequency response. (iii) Lastly,
to handle sudden noise in phase measurements that our SNR
enhancement algorithm may not fully eliminate when the
target moves at a longer distance, we introduce an LSTM-
based fine-grained displacement reconstruction algorithm. This
algorithm is specifically designed to filter out abrupt changes
in phase derivatives, thereby further extending the operational
range of fast hand motion tracking.

Implemented as SWIFTTRACK+ on COTS Android phones,
our techniques facilitate fine-grained and robust fast hand
motion tracking with acoustic signals from up to 2m away.
Extensive evaluations validate the effectiveness of each tech-
nique. We also compare our system’s performance with
existing solutions like LLAP, Strata, and VSkin. Results show
that for velocities ranging from 5cm/s to 240cm/s, the
median error in estimated absolute distance is just 0.63cm, sur-
passing Strata, VSkin, and LLAP by 253%, 327%, and 1114%,
respectively. Our work systematically addresses several critical
practical challenges, demonstrating its benefits through real-
world implementation. Note that, our solutions can be easily
integrated to existing acoustic sensing systems to improve their
performance under high mobility, low SNR, and heterogeneous
devices.

The rest of this paper is organized as follows: Section II
provides an overview of the conventional CIR-based motion
tracking methods, while Section III outlines the major chal-
lenges in motion tracking. Our approach is detailed in
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Section IV, where SWIFTTRACK+’s algorithmic series for
precise and robust fast hand motion tracking in real-world
scenarios are elaborated. The performance evaluation of our
system is presented in Section V. Section VI reviews related
work, followed by discussions in Section VII, and the paper
concludes in Section VIII.

II. PRELIMINARY

In this section, we provide an overview of CIR-based
acoustic tracking schemes as utilized in [12] and [13], which
are notable for their high tracking accuracy and ability to
differentiate multiple targets with distinct delays.

A. Estimating Transmission of the Reflected Signal

For channel estimation, the transmitter emits a known
acoustic sequence (derived from a training sequence) within
the inaudible range (e.g., above 17kHz). There are a bunch
of training sequences can be used for acoustic tracking in
literature [11], [12], [13], [27]. The choice of training sequence
under fast movement will be discussed in Sec. IV-B.1 and here
we use x[n] to denote our training sequence. To ensure the
acoustic signals remain inaudible, we first transform the root
sequence from the time domain to the frequency domain using
a Fast Fourier Transform (FFT), then pad zeros to confine its
bandwidth within the inaudible range (e.g., 17 − 23KHz).
Subsequently, we convert it back to the time domain via an
Inverse Fast Fourier Transform (IFFT). The baseband signal
xt[t] length becomes N = Nr× fs

bw , where Nr is the length of
the root sequence x[n], bw is the required bandwidth, and fs

denotes the sampling rate. The up-conversion of the baseband
signal to the inaudible band is achieved by multiplying it with
exp(j2πfct), where fc is the central frequency (e.g., 20KHz
for 17− 23KHz).

The receiver, such as a built-in microphone on a smart-
phone, captures the reflected acoustic signal and performs
down-conversion to retrieve the baseband signal (xr[t]). As the
receiver operates as a Linear Time-Invariant (LTI) system, the
received base-band signal can be modeled as:

xr[t] =
∑

i

Ai(t)xt[t− τi(t)] = h[t] ∗ xt[t] (1)

where ∗ denotes the convolution operator, i denotes the index
of the propagation path, and Ai and τi are the channel atten-
uation and delay for the i-th propagation path, respectively.

Let h[n] represent the discrete output of h[t], which can be
formulated as:

h[n] =
∑

i

Ai(n)δ[n− τi(n)] (2)

where δ[n] is a discrete Dirac’s delta function [28], effective
only when n = τi(t). The phase change at the target tap
is directly proportional to the delay change of the target,
facilitating the tracking of moving objects using the CIR phase.
Following existing methodologies [13], [17], we estimate the
channel response h[n] by correlating the received signal xr[n]
with the transmitted signal xt[n].

Before estimating the target’s distance, it is essential to
eliminate background multipath effects, including the direct

path from the speaker to the microphone and reflections from
static surroundings. Various background removal algorithms
exist in the literature, such as LEVD [11], DDBR [29], and
direct subtraction [15]. For simplicity, we employ direct sub-
traction, measuring the background interference in the absence
of the target and then subtracting it from the estimated channel
(h[n]) in the presence of the target, akin to the approach
in [15] and [24].

B. Achieving Fine-Grained Tracking With Phase
Measurement

In the realm of acoustic sensing, precise target tracking is
of paramount importance. Two distinct pieces of information
time-of-flight (ToF) and phase-based measurements are instru-
mental in deriving the displacement of a target.

Coarse-grained tracking using time delay: The channel
tap, designated as n̂, which maximizes the magnitude of
the CIR, is indicative of the signal delay. Hence, we can
ascertain the delay based on n̂. However, this estimation is
subject to inaccuracies stemming from limitations in audio
sampling frequency, ambient noise, and multipath interference.
Consequently, this estimation serves primarily as a coarse
indicator of the initial position.

Fine-grained tracking using phase measurement: In
contrast, the phase of the selected tap offers more precision
and facilitates a fine-grained estimation of the target’s dis-
placement. As outlined in [12] and [13], the displacement is
calculated from the phase difference as follows:

∆dist =
c

fc

∆Phase

2π
× 1

2
(3)

Here, the result is halved to account for the round-trip path of
the signal in a device-free setup.

Subsequently, by integrating the coarse-grained initial posi-
tion with the fine-grained displacement estimation, we can
deduce the target’s current position, following methodologies
established in [12] and [13].

III. CHALLENGES

A. Consequences of Fast Movement

Rapid movement in acoustic tracking introduces two pri-
mary issues: Doppler shift and phase ambiguity. These are
discussed in more detail below.

1) Impact of Doppler Effect: Consider a scenario where a
target moves at a speed of 2m/s and the frequency of sound
waves is 20kHz. This movement can induce a frequency
shift of approximately 233Hz in a round-trip. Given that
the speaker emits periodical signals with a 10ms period,
the frequency spacing will be around 100Hz. Therefore, a
2m/s movement can result in a non-negligible frequency shift
(i.e., 233Hz), which subsequently affects the down-conversion
process, leading to distortions in the channel response h[n].
Such pulse distortion significantly impacts the accuracy of tap
selection and phase measurement.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on May 10,2025 at 06:43:43 UTC from IEEE Xplore.  Restrictions apply. 



688 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 2, APRIL 2025

Fig. 2. Illustration of phase unwrapping concept and two major issues that cause the ambiguity. (a) The true phase (right) can be unwrapped losslessly from
the wrapped phase (left) if there is no phase ambiguity. (b) The insufficient sampling rate of phase may cause ambiguity. (c) Noise may cause ambiguity.

2) Impact of Phase Ambiguity: The phase measured from
channel h[n], as per Eq. 2, is inherently wrapped within the
range (−π, π). Phase unwrapping is the process of reconstruct-
ing the original phase from this wrapped value [30]. This
concept is illustrated in Fig. 2(a), where the correct phase
is reconstructed by removing “phase jumps”. As stated by
Itoh [31], this reconstruction is feasible if the smoothness
condition, represented by

|∆ϕn| ≤ π (4)

is satisfied. For a comprehensive understanding of the phase
unwrapping algorithm, refer to [30] and [31].

As depicted in Fig. 2(b), insufficient phase samples can
result in phase changes greater than π, leading to unwrapping
failures. Additionally, as shown in Fig. 2(c), sudden phase
changes induced by noise can also contribute to phase ambigu-
ity. Fast movement exacerbates these issues, as it often results
in an inadequate sampling rate for phase measurements, further
intensifying phase ambiguity.

While advanced phase unwrapping techniques such as
the Path Following Algorithm (PFA) [32], [33], [34] and
Quality-Guided Algorithm (QGA) [32], [35], [36] are preva-
lent, they are predominantly designed for two-dimensional
phase unwrapping. These methods utilize a carefully chosen
unwrapping path to circumvent regions of ambiguity. In two-
dimensional phase data, ambiguity is effectively detected
through closed path loops [32]. However, one-dimensional
phase data presents a unique challenge: closed loops are not
applicable for identifying ambiguous regions, because there
is only a single unwrapping path. This makes dealing with
ambiguity in one-dimensional data particularly challenging,
especially under the fast movement conditions in real-world
implementation.

B. Impact of Low SNR

SNR plays a critical role in tracking accuracy. Phase-
based methods are particularly sensitive to SNR variations,
as the error accumulates when integrating phase changes over
time for distance estimation [23]. As depicted in Figure 3,
a decrease in SNR from 15dB (equating to a 30cm distance
between the target and the phone) to −25dB (at a distance of
150cm) significantly increases the distance estimation error in
Strata from 0.93cm to 4.25cm.

C. Impact of Hardware Frequency Response

In commodity mobile devices, frequencies above 15kHz
are less audible and typically not optimized, resulting in

Fig. 3. Accuracy change with the decrease of SNR.

Fig. 4. Frequency response of 5 different devices.

uneven frequency responses from the speakers and micro-
phones. This uneven response can cause substantial distortion
in signals and inaccuracies in the generated channel impulse
response as defined in Eq. 2. While several previous stud-
ies (e.g., [26], [37]) have addressed and compensated for
uneven amplitude across frequencies, our work sheds light
on the uneven phase across different frequencies. As illus-
trated in Figure 4, there is a significant variation in phase
across frequencies. Such pronounced phase changes can
introduce tracking errors, underscoring the importance of
measuring and compensating for both the uneven phase and
amplitude.
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Fig. 5. Signal processing pipeline of SWIFTTRACK+.

IV. OUR APPROACH

This section firstly provides an overview of the pipeline
of SWIFTTRACK+ design, then elaborates on our strategies
to address the challenges of fast movement, low SNR, and
uneven frequency response in acoustic tracking.

A. System Overview

SWIFTTRACK+ utilizes inaudible acoustic signals in the
range of 17kHz to 23kHz for fine-grained, device-free
hand motion tracking. Surpassing previous works, SWIFT-
TRACK+ fundamentally enables tracking of fast movements
and enhances robustness in real-world applications through
a series of novel algorithms. Fig. 5 illustrates the signal
processing pipeline of SWIFTTRACK+. The system emits
inaudible sounds from a built-in speaker of COTS mobile
devices, which travel in a straight line, reflect off a moving
hand, and are then captured by built-in microphones. The
process begins with compensation for both amplitude and
phase distortions due to hardware frequency response. This
is followed by an SNR enhancement algorithm inspired by
time-domain beamforming, aimed at ensuring robust tracking,
particularly over longer distances. Subsequently, Doppler shift
caused by movement is compensated, and corresponding chan-
nel taps are selected for time delay and phase measurement.
The phase derivative method is then applied to resolve phase
ambiguity associated with fast movements, enabling precise
measurement of fine-grained velocity. Lastly, the finely esti-
mated velocity and coarsely determined tap index (i.e., the
time delay) are fed into an LSTM-based distance estimator
for robust distance recovery. To elucidate our approach in
the following discussion, we begin with the core aspect of
facilitating fast movement tracking - tackling high mobility
challenges. This is addressed in two aspects: (i) choosing
an appropriate training sequence with anti-Doppler property
and compensating for Doppler shift to enhance tap selection
(Sec. IV-B), and (ii) implementing our phase derivative method
to circumvent phase ambiguity (Sec. IV-C). Additionally,
due to the complexities of real-world deployment, such as
long-distance tracking and the heterogeneity of COTS devices,
we introduce algorithms for SNR enhancement (Sec. IV-D),
hardware frequency response compensation (Sec. IV-E), and
the LSTM-based robust distance recovery (Sec. IV-F).

B. Training Sequence and Doppler Compensation

Fast movement primarily affects acoustic tracking through
the Doppler effect, which reduces the correlation between
the received and transmitted signals. This poses significant
challenges in designing the training sequence. We explore

Fig. 6. The correlation of different training samples under severe Doppler
effect.

the choice of training sequence for scenarios involving rapid
movement and discuss methodologies to effectively compen-
sate for the Doppler effect caused by such motions.

1) Training Sequence Under Fast Movement: There are
many pseudo-random sequences can be used for training
sequence, including GSM [38], Barker [39], and Zadoff-Chu
(ZC) [40]. We opt for the ZC sequence, widely used in modern
cellular systems like LTE and 5G NR [41], defined as:

ZC[n] = exp(−j
πµn(n + 1)

NZC
) (5)

where NZC is the sequence length, 0 ≤ n<NZC , 0<µ<NZC

and gcd(NZC , µ) = 1. Following the procedures outlined in
Sec. II-A, we convert these training sequences into inaudible
sounds for transmission.

Fast movement scenarios, which induce substantial Doppler
shift, can affect the performance of different transmitting
signals. Fig. 6 presents a simulation comparing the correlation
performance of the aforementioned training sequences along
with Frequency-Modulated Continuous-Wave (FMCW) [42],
[43] and white noise [14]. While Fig. 6(a) indicates all five
transmitting signals exhibit favorable correlation properties in
the absence of Doppler shift, Fig. 6(b) reveals that in the pres-
ence of a 100Hz Doppler shift (equivalent to approximately
85m/s moving speed in a device-free system), only the ZC
and FMCW sequences still maintain a high correlation peak,
while the others showing negligible correlation. This is possi-
bly due to the fact that the phase change of ZC and FMCW
signals in the frequency domain is quadratic [44], while the
frequency shift caused by the Doppler effect introduces only a
linear phase change; thus the correlation peak is still preserved.

This indicates that high-confidence channel tap selection is
possible using ZC and FMCW signals, even under fast move-
ment conditions. In SWIFTTRACK+, we use the ZC signal, but
our proposed algorithms for enabling fast movement tracking
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Fig. 7. CIR estimations are severely distorted by motion due to the significant
Doppler effect. The red dots are the selected taps according to the maximum
channel taps.

are also applicable to systems employing FMCW signals, since
both ZC and FMCW signals can be used for CIR estimation
and FMCW signals can also be transformed into signals with
flat spectrum [42], like ZC signals.

2) Efficient Doppler Compensation for Tracking: Although
selecting high-confidence channel taps (with sufficient power)
is achievable, we observe that motions still significantly distort
the CIR profiles in practice. This distortion is evident in
Fig. 7(a), which was generated by tracking a hand-sized object
moving between 20cm and 55cm. Such distortions can lead
to substantial errors in both CIR estimation and tap selection.
To mitigate these effects, compensating for the Doppler shift is
necessary to reduce the distortions in the CIR. Drawing inspi-
ration from frequency synchronization techniques commonly
used in digital communication systems [45], [46], we process
the baseband complex signal by exploring different Doppler
shifts and choosing the one that maximizes the peak value
of the CIR profiles. The effectiveness of this approach is
illustrated in Fig. 7(b), where the CIR profile and tap selec-
tion appear significantly smoother, indicating better accuracy.
However, while this method is simple and effective, it is not
sufficiently efficient for implementation on mobile devices.

Previous works like Strata, LLAP, and VSkin have shown
accurate tracking performance when the target’s velocity is
below a certain maximum supportable velocity, vmax, cor-
responding to a Doppler shift of ∆fvmax. This suggests
that Doppler shifts below ∆fvmax only introduce negligi-
ble errors. Therefore, for tracking purposes, our Doppler
compensation can be relatively coarse. We aim to ensure
the frequency shift between the compensated and template
frames is smaller than ∆fvmax. Consequently, we search for
the velocity using a step size empirically set to 10cm/s.
Given that the peak acceleration of human arms is approx-
imately 30m/s2 [47], the maximum velocity change between

two consecutive frames is about 30cm/s. Accounting for
round-trip propagation in device-free tracking, we set the
search range to (ve− 60cm/s, ve + 60cm/s), where ve is the
previous velocity estimate and the initial velocity is assumed
to be 0 due to the target starting from a stationary position.
Recent studies indicate that time domain cross-correlation is
memory efficient, but frequency domain cross-correlation is
more time efficient [48], [49]. Therefore, we utilize frequency
domain cross-correlation [50] to expedite the cross-correlation
step when enumerating potential Doppler shifts. Additionally,
we employ the FFTW library [51] to enhance the efficiency
of FFT computations.

C. Enable Fine-Grained Fast Hand Motion Tracking

To facilitate fine-grained fast hand motion tracking, mea-
suring the phase change of each channel tap is crucial.
However, even with smoother tap selection, ambiguity between
consecutive channel taps persists. This section first examines
the impact of fast movement on phase and the limitations of
conventional solutions. We then introduce our core solutions
to overcome phase ambiguity in fast motions. Lastly, we dis-
cuss real-world implementation issues, motivating further
improvements by addressing other acoustic tracking challenges
(i.e., enhancing SNR in Sec. IV-D, adjusting for hardware
frequency response in Sec. IV-E, and robust distance recovery
in Sec. IV-F).

1) Why Fast Movement Causes Phase Ambiguity: The
small wavelength of inaudible acoustic signals, while enabling
precise motion tracking, also increases the likelihood of phase
wrapping. A displacement as small as 1.73cm at 20kHz
can result in a 2π phase change, leading to phase wrap-
around. Accurate displacement determination thus requires
phase unwrapping, which requires the smoothness condition
in Eq. 4 and is crucial for avoiding phase ambiguity. The
phase measurement ϕd[t] relates to the distance d[t] as:
ϕd[t] = − 2πfc

c d[t]×2 = − 4πfc

c d[t]. To satisfy the smoothness
condition, we derive:

|ϕd[t]− ϕd[t− 1]| ≤ π

4πfc

c
|d[t]− d[t− 1]| ≤ π

4fcT

c
|d[t]− d[t− 1]

T
| ≤ 1

4fcT

c
|v[t]| ≤ 1

|v[t]| ≤ c

4fcT
(6)

With c = 343m/s, fc = 20kHz, and T = 10ms, the
maximum velocity should satisfy: |v[t]| ≤ 0.43m/s. Since
hand movements can reach up to 2.7 m/s [47], phase changes
may easily exceed π, causing significant errors in distance
estimation. The red line in Fig. 8 illustrates the fast hand
motion tracking using the phase of the channel taps after
Doppler compensation shown in Fig. 7. As we can see,
even though the CIR profile appears smooth after Doppler
compensation, the phase measurements remain ambiguous due
to the fast motions. In a nutshell, fast movement makes
phase change faster and the sampling rate (we accumulate
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Fig. 8. Phase derivative can effectively resolve phase ambiguity and recover
the fine-grained trajectory in fast hand motion tracking.

one phase sample at each frame) is not sufficient for
reconstructing the true motions. This is a more acute issue
in acoustic sensing, where speeds exceeding 0.43m/s are
common, unlike in radar systems where RF signals propagate
at much higher speeds.

2) Conventional Solutions to the Under-Sampling Issue: To
accommodate rapid movements in acoustic tracking, reducing
the frame length used for channel estimation is a common
strategy. For instance, to support velocities up to 2.7m/s,
the frame length might be decreased to as short as 1.25ms
according to Eq. 6. However, this reduction negatively impacts
both detection range and SNR [52], [53]. Another method
involves increasing the sampling frequency while keeping the
frame duration constant, which is typically achieved by frac-
tionally sliding the window. This technique, used in previous
works like [13] and [54], becomes ineffective when motion
exceeds the maximum supported speed as observed in our
tests. Therefore, our goal is to circumvent phase ambigu-
ity in situations of fast motion while maintaining practical
frame lengths (e.g., 10ms) and channel estimation intervals
(e.g., 10ms).

3) Applying Phase Derivative to Circumvent Phase Under-
Sampling: Our core observation is that the phase quotient of
two consecutive taps can be utilized to estimate motion:

p′[t] =
p[t]

p[t− 1]

=
|p[t]|

|p[t− 1]|
e−j 2πfc

c (d(t)−d(t−1))

= |p′[t]|e−j 2πfcT
c v(t) (7)

Unwrapping the phase of p′[t], denoted by ϕv[t], can derive
the fine-grained velocity estimation. Interestingly, using the
phase derivative for tracking avoids phase ambiguity until
much higher thresholds, which offers a viable solution for
tackling fast motion issue:

|ϕv[t]− ϕv[t− 1]| ≤ π

4πfcT

c
|v[t]− v[t− 1]| ≤ π

4fcT
2

c
|v[t]− v[t− 1]

T
| ≤ 1

4fcT
2

c
|a[t]| ≤ 1

|a[t]| ≤ c

4fcT 2
(8)

This indicates no phase ambiguity as long as the acceler-
ation of our moving arms stays below 42.3 m/s2 over a
10ms frame. Given peak human hand acceleration is about
30m/s2 [47], phase derivative tracking should not incur
phase ambiguity. The blue line in Fig. 8 shows the track-
ing results by applying the phase derivative method, which
successfully recovers the fine-grained trajectory of the fast-
moving hand. In essence, applying phase unwrapping to
the first-order phase derivative effectively circumvents the
under-sampling issue caused by fast human movement.
We assume the target starts from a static position (i.e., zero
initial velocity and acceleration). Additionally, this method
could extend to higher-order phase derivatives for even greater
mobility. Our phase derivative method differs from conven-
tional path following algorithms (PFA) and quality-guided
algorithms (QGA) in two aspects: (i) it is applicable to
one-dimensional phase data, and (ii) it directly applies basic
unwrapping algorithms to the phase derivative without requir-
ing ambiguity detection.

4) Issues in Real-World Implementation: While the phase
derivative approach is theoretically sound and effective in sim-
ulations, real-world implementation presents additional issues:
(i) significant sudden phase changes (caused by low SNR or
signal distortion), as exemplified in Fig. 2(c), may lead to
phase unwrapping failure, resulting in errors when converting
fine-grained velocity into distance, (ii) low SNR conditions
may impair the effectiveness of the Doppler compensation
algorithm. These phenomena are largely due to the rapid
attenuation of acoustic signals and distortion in hardware
frequency response, which are common challenges in motion
tracking. Therefore, we address these issues in Sec. IV-D
and Sec. IV-E to enhance the robustness of fast hand motion
tracking. These algorithms are also applicable to other acoustic
tracking systems requiring SNR enhancement and hardware
frequency compensation.

D. SNR Enhancement of CIR Profiles

The SNR in acoustic tracking can be adversely affected by
the rapid attenuation of the reflected signal and the limited
power output of mobile device speakers. This often results in
noisy phase measurements of the taps corresponding to the
target, as illustrated in Fig. 9(a), leading to errors in Doppler
estimation and phase measurement. The CIR is modeled as:

ĥ[n] = g[n] ∗ h[n] + w[n] (9)

where w[n] represents noise, ĥ[n] is the measured CIR, and
g[n] is the distortion caused by Doppler shift. Our objective
is to minimize the impact of w[n] in ĥ[n]. Our approach
is inspired by the principle of antenna beamforming, where
signals received at different times can be constructively com-
bined after compensating for phase differences caused by
varying positions [24]. This method is effective even with a
single microphone, as CIRs are summed over time for each
microphone.

To compensate for phase changes between consecutive
frames, we note that CIRs are typically rotated by a phase
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Fig. 9. Time domain beamforming effectively improves the SNR of the CIR profile.

caused by motion. This relationship can be expressed as:

h[n] = h[n− 1]ejϕ (10)

where ϕ is the phase change due to motion. This model is
valid for a single moving object. For multiple well-separated
moving objects, each object influences a subset of taps, and the
equation holds for the taps adjacent to each object. We estimate
the next CIR using the Exponential Weighted Moving Average
(EWMA) [55] as follows:

z[n] = (1−K)× z[n− 1]ejϕ̂ + K × h̃[n] (11)

where z[n] is the SNR-enhanced CIR, h̃[n] is the measure-
ment, and z[0] = h̃[0]. The weighting factor K is empirically
set to 0.3. ϕ̂ is the best phase estimate aligning z[n − 1]ejϕ̂

with h̃[n].
To determine ϕ̂, we employ the maximum entropy princi-

ple [56] in the following optimization model:

argmax
ϕ

H(normalized(|h̃[n]− ẑ[n]| · |ẑ[n]|)) (12)

where H(·) represents the Shannon entropy and ẑ[n] = z[n−
1]ejϕ̂ is the predicted next channel. The term |h̃[n] − ẑ[n]|
is the amplitude of the error between the measured and
predicted CIR, spread across all taps. The dot product between
|h̃[n] − ẑ[n]| and |ẑ[n]| prioritizes minimizing errors closest
to the target. The maximum entropy principle suggests that
without prior knowledge of a distribution, the most uniform
distribution (maximum entropy) should be chosen. Hence,
we maximize the Shannon entropy of this error function to
evenly distribute weighted residual errors across each tap.
An iterative gradient descent algorithm is used to solve this
optimization problem.

An example of an SNR-enhanced profile is shown in
Fig. 9(b), where noise is effectively suppressed. Again,
we assume the object starts from a static state with zero
initial phase change (i.e., ϕ̂0 = 0). Additionally, as shown in
Fig. 9(b), our algorithm can suppress residual multipath and
background noise, enhancing tracking accuracy for long-range
detection.

Given the short frame duration (i.e., 10ms), two consec-
utive CIR profiles are likely affected by a similar Doppler
distortion g[n]. Thus, Eq. 10 holds even with the presence
of g[n], indicating that our SNR enhancement algorithm
is also effective under Doppler shift. After obtaining the
SNR-enhanced CIR profile, z[n, t], we need to convert the

Fig. 10. Different hardware frequency compensation schemes.

CIR profiles back to a baseband signal to compensate for
the Doppler distortion g[n]. Inspired by frequency domain
cross-correlation, the baseband signal from a CIR profile is
approximated as follows:

r̂x[n, t] ≈ iFFT (FFT (z[n, t]) · FFT (zc[n])) (13)

The Doppler shift in r̂x[n, t] is then compensated, and the
resulting signal is converted back to a CIR profile, as depicted
in Fig. 9(c).

E. Compensating Hardware Frequency Response

Speakers and microphones commonly exhibit an uneven
frequency response. The received signal r is influenced by both
the wireless channel and the hardware frequency response,
described as: ZCR[n] = h[n] ∗ hh ∗ ZCT [n], where hh

represents the hardware frequency response. It’s important to
note that hh is a complex number, indicating that the hardware
frequency response affects both the amplitude and phase of the
received signal.

Prior studies primarily focus on the amplitude aspect of
the hardware frequency response (e.g., [26], [37]). However,
our findings highlight the significance of the phase of the
frequency response. In the absence of hardware distortion, the
phase response should be linear with respect to frequency, but
hardware distortion results in a nonlinear phase response [57].

Fig. 10 demonstrates the effectiveness of different fre-
quency compensation schemes within the 17− 23KHz range
on a Google Pixel3: (i) compensating for phase response
alone, ∠hh, (ii) compensating for amplitude response alone,
|hh|, and (iii) compensating for both phase and amplitude
responses, hh. The purple line indicates the raw CIR profile.
Without compensation, two issues are evident: (i) the dimin-
ished energy of the main lobe, which leads to reduced SNR,
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and (ii) the increased energy of side lobes, potentially causing
more distortions and complicating the estimation of Doppler
shifts and tap selection. Amplitude response compensation
alone, as adopted in previous works [26], [37], yields some
improvement. However, compensating for the phase response
not only narrows the main lobe but also reduces the side lobes.
Furthermore, compensating for both phase and amplitude
results in the highest peak value. Consequently, we address
hardware distortions by compensating for both the phase and
amplitude responses.

In Section V, we extend this evaluation to various com-
pensation schemes on different phones and frequencies,
demonstrating that their relative effectiveness depends on the
specific hardware and frequency range. Nonetheless, compen-
sating for the phase of the frequency response is universally
crucial in all scenarios.

F. Robust Position Estimation

By applying the phase derivative method, we effectively
circumvent phase ambiguity issues arising from fast motions.
However, this approach yields unwrapped phases that represent
the target’s velocity. This section discusses how to robustly
reconstruct the position of our target from this recovered
velocity.

1) LSTM-Based Robust Fine-Grained Distance Reconstruc-
tion: A straightforward method to reconstruct fine-grained
displacement is integrating the estimated velocity derived from
the phase derivative. However, as discussed in Sec. IV-C,
sudden noise can cause abrupt changes or ‘jumps’ at some
samples, leading to errors after phase unwrapping. If we
integrate the velocity over time, these errors can accumulate.
Although we have proposed SNR enhancement and hardware
frequency response compensation algorithms in Sec. IV-D
and Sec. IV-E, respectively, sudden noise instances may still
occasionally occur when the object moves at a longer distance.
To address this issue, we incorporate both the fine-grained
velocity estimation (which has less noise but occasional
longer-term errors) and the coarse-grained distance estimation,
i.e., the time delay, from channel taps (which exhibits more
noise but no longer-term errors) into a simple LSTM model,
which consists of two LSTM layers (with input size 16 and
hidden size 64) and conventional layers at the input and output.
Since the time interval between two consecutive estimations
is 10ms, the time delay by using the LSTM model is 80ms
(we have fine-grained velocity and coarse-grained distance at
each estimation, respectively), which is acceptable for user
interactions. This model combines these two types of data to
achieve robust distance recovery even with the existence of
significant noise in the phase derivative, which further extends
the working range of SWIFTTRACK+.

2) 2D Positioning: Given the known relative positions of
the speaker and two microphones on a phone, we can calculate
the path length from the speaker to one microphone. Conse-
quently, the potential locations of our target should lie on an
ellipse in 2D space, with the speaker and microphone serving
as foci, as per the principles of acoustic triangulation [2], [11],
[12]. Utilizing two microphones, the target can be pinpointed
at the intersections of two ellipses. Typically, there are two

Fig. 11. Experiment setup.

intersection points, but we select the one located in front of the
tracking device, which is a common area for user interaction,
such as tracking hand movements.

V. EVALUATION

A. Experiment Setup

To extensively evaluate the performance of our schemes,
we develop an Android app SWIFTTRACK+ and test it on the
following five COTS devices: SamSung S7, Google Pixel 3,
Xiaomi K20 Pro, Honor 20 Pro 1, and Honor 20 Pro 2.
Our app performs entire signal processing locally on the
smartphones in real-time. The speaker volume was set at
80% of the maximum and the microphone sampling frequency
was fixed at 48 kHz. We set the ZC sequence frame length
T = 10ms, corresponding to a maximum unambiguous range
of around 1.7m. This operating range is large enough for
the interaction of human hand movement, and signals outside
this range are negligible. Given the 4kHz bandwidth and
10ms× 48kHz = 480 samples in each frame, we set Nzc =
39 and the root of ZC sequence µ = (Nzc − 1)/2 = 19.

To better control the moving speed, we mounted a
hand-sized reflector on a 1.6m long track and push it with
human arms, as shown in Fig. 11(a). We placed a Real-
Sense D435i [58] in front of the track to get the ground truth
of target movements. However, due to the smaller range of
the depth error, we place the object as close to the depth
sensor as possible and strictly follow the instruction [59] to
tune the parameters of the depth sensor to achieve the best
performance. We also evaluate our schemes with users’ hands
as shown in Fig. 11(b). We attach a red marker to the center of
the user’s palm, which facilitates the Real-Sense to get ground-
truth positions.

B. Micro-Benchmark

1) Impact of Phase Derivative: We first evaluate our
approach using the phase derivative to address fast movement.
We perform experiments using a moving track and compen-
sate the Doppler shift using the ground truth velocities. The
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Fig. 12. Performance of (a) phase derivative scheme, doppler compensation scheme for (b) phase-based and (c) tap-based, (d) SNR enhancement.

average velocity is 0.88m/s; in 76% of time, the velocities
are larger than 0.45m/s, which cause phase ambiguities.
Then we derive the distance from the selected taps’ phase
in two ways: (i) directly unwrap the measured phase without
phase derivative and (ii) perform phase unwrapping on the
first-order phase derivative and integrate the estimated veloc-
ity to get the final displacement. The results are shown in
Fig. 12(a). Due to phase ambiguities caused by the under-
sampling issue, the direct phase unwrapping cannot reconstruct
the actual displacement, leading to significant errors. As we
can see, the first-order phase derivative efficiently solves the
under-sampling issue and reduces the median error by 96%
from 11.27cm to 0.46cm, 90th percentile error from 21.73cm
to 0.72cm, thereby supporting fast movement.

2) Doppler Shift Compensation: We evaluate the impact
of pulse distortions on tracking performance. Since the pulse
distortion is related to the moving speed and high moving
speed will cause an insufficient phase sampling rate, we apply
the circular shift-based up-sampling scheme to decouple the
pulse distortion and sampling interval. Then the tracking
performance is mainly determined by the pulse distortion.
Fig. 12(b) shows that the median error is reduced from
7.67cm to 0.49cm and the 90th percentile error is reduced
from 18.56cm to 0.79cm, with the Doppler compensation.
The result implies that even if the under-sampling issue is
solved, the pulse distortion will also cause the failure of
tracking rapid motion. Since the distorted pulse makes tap
selection challenging, we also evaluate its impact on the
absolute distance measurement corresponding to the selected
taps. As shown in Fig. 12(c), the median absolute error is
reduced from 6.37cm to 0.79cm and the 90th percentile
error is reduced from 9.27cm to 1.53cm, with the Doppler
compensation, implying a significant influence from the pulse
distortion.

3) Enhancing SNR: We evaluate the performance of our
SNR enhancement algorithm when the low SNR is low. The
SNR is −3dB when the target is 50cm from the phone and
reduced to −16dB at 1m. In this experiment, we move the
target between 1m to 1.3m with a speed lower than 20cm/s
to ensure the signal is mainly affected by the noise. Then
we compare the tracking accuracy with and without applying
our algorithm. The results are shown in Fig. 12(d). We can
see that our SNR enhancement algorithm reduces the median
displacement error by 70% from 1.54cm to 0.46cm, and
more importantly it significantly improves the tail performance
(reducing the 90th percentile error by 87% from 6.98cm
to 0.91cm).

4) Hardware Frequency Response: The frequency response
varies with devices, and different frequency responses impact
the experimental results differently. To evaluate the impact of
the frequency response compensation method, we compare the
results in the following conditions: (i) do not compensate for
frequency response (labeled as “Raw” in Fig. 13 (a) and (b)),
(ii) compensate for amplitude response (“Amp”), (iii) com-
pensate for phase response (“Phase”), and (iv) compensate
for both phase and amplitude response (“Phase + Amp”).
Moreover, the amplitude response may significantly suppress
energy in some frequencies, as depicted in Fig. 4. Therefore,
we conduct two experiments. In the first experiment, we use
the frequency from 17kHz to 21kHz for Fig. 13(a). We use
17kHz to 23kHz in the second experiment for Fig. 13(b).
Compensating for the amplitude response may degrade the
accuracy because it will magnify the energy of noise for the
frequencies above 22kHz. In comparison, the phase compen-
sation always has significant improvement. Thus, we use the
both the phase and amplitude compensation scheme in the
frequency band from 17kHz to 21kHz in our implementation.

5) Robust Fine-Grained Distance Recovery: We evaluate
the LSTM-based robust fine-grained distance recovery scheme
with the presence of residual sudden noise in the phase
derivatives (e.g., tracking a moving hand in the distance
from 150cm to 200cm), where the errors at some points
of the unwrapped phase (represent the estimated velocity)
will accumulate over time if we directly integrate the esti-
mated velocity, making the reconstructed distance severely
drift. Previous works [2], [11], [12] also adopted a fusion
approach which combines the coarse-grained distance and the
fine-grained displacement to achieve better performance by
simply using a weighting factor. Fig. 14 compares the per-
formance of our LSTM-based approach and the conventional
weighting factor-based approach with the presence of sudden
noise change when we recover the fine-grained velocity to
the distance of the target, which shows that the LSTM-based
approach can significantly enhance the tail performance when
there exist sudden change in the phase derivate, reducing the
90th percentile error by 70% from 8.50cm to 2.51cm. The
failure of the weighting factor-based approach implies that
it cannot effectively tackle the significant error accumulation
when integration is required.

6) Tracking Rapid Motion With Combined Schemes: We
evaluate the performance of the combined schemes. Since
the Doppler compensation scheme and SNR enhancement
scheme can work independently to improve the tracking accu-
racy, we conduct two separate experiments under different
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Fig. 13. Performance of frequency response compensation scheme on different bands, i.e., (a) 17kHz − 21kHz and (b) 17kHz − 23kHz. Performance
of combined schemes under different conditions, i.e., (c) the target moves fast and close to the phone (30cm), and (b) the target moves slowly but far from
the phone (120cm).

Fig. 14. Robust distance reconstruction with the presence of residual sudden
noise.

conditions to evaluate their performance. The results are
shown in Fig. 13 (c) and (d). We compare the improvement
after adding more schemes. PD, Freq, Doppler, and SNR
represent phase derivative, frequency response compensa-
tion, Doppler compensation, and SNR enhancement schemes,
respectively. The Doppler compensation scheme is applied
when the target is close to the phone (30cm) and moves fast.
Fig. 13(c) shows that the Doppler compensation significantly
improves the tracking performance by 68% in the near field,
and adding the frequency response compensation can further
reduce the median error by 12%.

The SNR enhancement scheme is applied when the target is
far from the phone (120cm) but moves slowly. In Fig. 13(d),
we can see that both the SNR enhancement and frequency
response compensation schemes significantly improve the
accuracy by around 65% in the far field, respectively. Com-
bining all schemes further improves the performance by 15%.

C. Overall Comparison

In this section, we compare the performance of our system
with the following previous work: Strata [12], VSkin [13], and
LLAP [11]. For fair comparison, we use the signals with the
same frame length: T = 10ms. Because Strata, VSkin, and
our system are channel-based methods, they share the same
traces. Since LLAP measures the phase of each frequency
independently, we set the initial phase of each frequency to
zero before playing the audio out by the speaker. We mounted
a hand-sized reflector on a 1.6m long track to better control
the maximum speed. We push this reflector in one direction
for each movement while varying the maximum speed from
5cm/s to 240m/s.

Fig. 15 shows the absolute distance estimation errors of
the four schemes. SWIFTTRACK+ achieves a median error of
0.63cm, outperforming Strata, VSkin, and LLAP by 253%,

Fig. 15. Overall comparison of ranging errors.

Fig. 16. Impact of velocities.

327%, and 1114%, respectively. Moreover, the tail perfor-
mance is significantly improved. The 95th percentile error
of SWIFTTRACK+ is reduced by 353%, 537%, and 1215%,
respectively.

1) Impact of Velocities: We further evaluate SWIFT-
TRACK+ under various scenarios. We first compare the
tracking errors under various velocities from 5cm/s to
240cm/s to cover the speed range of human hand motion.
Since human arm’s movement is unpredictable in real sce-
narios and the errors caused by fast motions may accumulate
over time, we calculate the mean error of each trace and the
maximum velocity. Fig. 16 shows the results. When the speed
is low (i.e., ≤ 10cm/s), these four schemes have similar
performance. When the speed exceeds 40cm/s, Strata and
VSkin degrade significantly. This is because for a frame length
of 10ms, the maximum supported speed is 45cm/s according
to the Eq. 6. When the moving speed is 240cm/s, the errors
of Strata and VSkin are 23.67cm and 30.41cm, respectively,
while the error of SWIFTTRACK+ remains small (3.69cm).

2) Impact of Distances: We test the system performance
at various distances from 30cm to 200cm with a step size
of 30cm. We conducted three sets of experiments under low
speed (≤ 20cm/s), medium speed (20cm/s ∼ 80cm/s), and
high speed (≥ 80cm/s), respectively. The results are shown
in Fig. 17. We can make the following two observations. First,
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Fig. 17. Impact of distances at low speed range (≤ 20cm/s), medium speed range (20cm/s ∼ 80cm/s) and high speed range (≥ 80cm/s).

Fig. 18. Impact of devices at low speed range (≤ 20cm/s), medium speed range (20cm/s ∼ 80cm/s) and high speed range (≥ 80cm/s).

Fig. 19. Impact of (a) locations, (b) ambient noise, and (c) users.

when the speed is high, only SWIFTTRACK+ works well at
various distances, while the other methods suffer from fast
motion. Second, when the speed is low or medium, thanks
to the SNR enhancement, frequency response compensation
schemes, and LSTM-based distance recovery, SWIFTTRACK+
can still out-perform the other methods.

3) Impact of Devices: We evaluate the tracking performance
on different COTS devices with low-speed (≤ 20cm/s),
medium-speed(20cm ∼ 80cm), and high-speed (≥ 80cm/s)
motion. The results are shown in Fig. 18. When the speed is
high, the performance is mainly determined by the velocity,
and only SWIFTTRACK+ works well. In the medium-speed
range, both SWIFTTRACK+ and Strata work well, but SWIFT-
TRACK+ have better performance due to the compensation
of hardware response. When the speed is low, we can see
that the four methods work similarly on Honor 20 Pro 1,
Honor 20 Pro 2, and Xiaomi K20 Pro; however, SWIFT-
TRACK+ outperforms Strata, VSkin, and LLAP by 36%-119%
on Google Pixel 3 and Samsung S7 because the uneven
frequency response is more pronounced on Google Pixel 3 and
Samsung S7 than the other phones as shown in Fig. 4.

4) Impact of Locations: To study the impact of different
locations, we test our system at four different locations: our
lab, a narrow corridor, a conference room, and an outdoor
public space. The results are similar across different locations

as shown in Fig. 19(a). The reasons are two-fold. First, the
reflections of the environment are measured and removed
by the background subtraction. Second, the slowly changed
background residuals mainly affect the performance in low
SNR regions, which can be effectively removed by our SNR
enhancement algorithm.

5) Impact of Ambient Sounds: We evaluate SWIFTTRACK+
with different ambient sounds. Specifically, we conduct exper-
iments in three scenarios: (i) a quiet environment (labeled as
“Q” in Fig. 19(b)), (ii) an environment with people talking
(“T ”), and (iii) an environment with music playing (“M”).
We place the noise source at 0.5m from the tracking device,
and 2 different volume levels are considered for (ii) and
(iii). The results of the 5 scenarios are shown in Fig. 19(b),
which shows similar performance across different scenarios.
The results are not surprising because we use the frequencies
beyond the audible frequency range of human ears and are not
affected by audible ambient sound.

6) Impact of Users: We evaluate SWIFTTRACK+ in real
usage scenarios. We recruit seven users to conduct experiments
(with IRB approval). They are encouraged to freely move their
arms back and forth. They are undergraduate and graduate
students, from 21 to 27 year old, with 1 female and 6 male.
The results are shown in Fig. 19(c) and we can make two
observations. First, though the speed may change significantly
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Fig. 20. Statistics of collected data.

Fig. 21. 2D and 3D drawing samples. “RS” represents the trajectories
captured by Real-Sense as reference. “SwiftTrack” represents the proposed
method and “Baseline” represents disabling the phase derivative, SNR
enhancement, frequency response compensation, and Doppler compensation.

during each test (i.e., including significant acceleration and
deceleration since users are not required to move theirs hands
at a constant speed), the median error over the seven partic-
ipants is 0.74cm, which is just slightly higher than that of
a hand-sized reflector (0.63cm). The slightly higher error is
more likely because arms introduce additional reflection and
arms’ movement may differ from that of the hand. Second,
the tracking accuracy across different users is similar, while
user 2 has slightly worse performance possibly due to that she
has a smaller hand size (female) with less reflective area.

D. Motion Statistics

We measure the speed distribution and acceleration distribu-
tion during the experiments. The results are shown in Fig. 20.
We see the maximum speed is 2.47m/s and the maximum
acceleration is 35.94m/s2. We have two observations. First,
nearly half of the occurrences exceed 0.8m/s, which is the
maximum speed supported by the previous works. Second,
the maximum acceleration is less than 43m/s2, which indicats
the phase derivative algorithm can handle fast human motion
tracking.

E. Drawing Samples

We build a draw-in-the-air interface based on SWIFT-
TRACK+ to show its drawing capability in 2D and 3D
spaces according to experiment setup in Strata [12] and
FMTrack [15]. Since tracking in 3D space requires at least
3 mics, we use external mics for data collection. The point
cloud data produced by Real-Sense are used to generate
reference trajectory [60]. We draw circles quickly with our
hands in the air (the 3D example) or on the desk (the 2D
example). The maximum velocity is 132cm/s. Fig. 21 gives

TABLE I
PROCESSING TIME OF EACH PART

the drawing examples with fast motion. We can see that the
baseline deviates significantly from the reference trajectories
while SWIFTTRACK+ follows.

F. System Latency

We measure the time for SWIFTTRACK+ to process each
10ms frame on Google Pixel 3 and report the median time
after running it for 30 minutes in Table I. Note that since the
computation of the phase derivative and frequency compensa-
tion schemes are simple, their process time is close to 0ms.
The Doppler compensation scheme and SNR enhancement
schemes take 4.37ms and 1.26ms, respectively. The total
processing time is 6.84ms. Therefore SWIFTTRACK+ can
process each 10ms frame in real-time.

VI. RELATED WORKS

Our work intersects with tracking technologies in the
following aspects: (i) device-free acoustic tracking, (ii) device-
based acoustic tracking, (iii) RF-based tracking, and (iv) phase
unwrapping techniques.

Device-free (Contactless) Acoustic Tracking: Device-free
acoustic tracking utilizes the speakers and microphones com-
monly found on COTS mobile devices and achieves high
accuracy. FingerIO [2] employs the Time-of-Arrival (TOA)
of reflected signals for tracking on mobile devices, using the
cyclic suffix property of OFDM symbols. However, its range
resolution is limited by the microphone’s sampling rate, and
phase changes in the frequency domain are noise-sensitive.
LLAP [11] uses continuous waves (CW) for tracking, less
susceptible to noise but prone to multipath interferences.
Strata [12] overcomes this using channel impulse response and
appropriate channel tap phase. RTrack [24] combines signal
processing with machine learning to extend sensing range, and
FMTrack [15] achieves multi-target tracking through iterative
parameter optimization.

Device-based Acoustic Tracking: In contrast, device-based
tracking involves users holding a device, offering higher SNR
and reduced multipath interference effects. AAMouse [61]
turns a mobile device into an air mouse by combining Doppler
shifts across frequencies. CAT [43] and Rabbit [25] leverage
chirp signals for distance estimation, while SoundTrack [62]
locates a specialized finger ring in 3D space using CW signal
phase information. Millisonic [42] tracks multiple devices
using the phase of time-domain mixed chirp signals.

RF-based Tracking: RF signals, including WiFi, RFID,
and mmWave, are also used for localization and track-
ing. ArrayTrack [63] utilizes signal phase for tracking
with a median error of 23cm using 16 antennas. RF-
IDraw [64] and WiDraw [65] achieve centimeter-level accu-
racy. High-frequency systems like mTrack [29], Soli [66],
and mmVib [67] improve performance but require custom
hardware.
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Phase Unwrapping Techniques: Phase unwrapping is
widely used in fields like optical interferometry [68], [69],
profilometry [70], SAR [71], [72], and MRI [73], [74],
[75]. Key challenges include identifying singularities in
two-dimensional phase data and selecting unwrapping paths
to avoid these areas, using methods like the residual the-
orem [32], [33], [34] and quality maps [32], [35], [36].
However, for one-dimensional phase data in tracking systems,
identifying and bypassing singularities is more challenging.

VII. DISCUSSION

SWIFTTRACK+ enhances tracking accuracy and robust-
ness under fast movements and can be easily integrated
into other systems to improve SNR and tackle uneven fre-
quency response. Despite the promising results in tracking
fast hand motions, several challenges remain for future work:
(i) extending the SNR enhancement to multiple channels to
further improve performance by leveraging spatial diversity,
and (ii) enabling fast movement tracking for various objects
by utilizing higher-order phase derivatives to accommodate
larger accelerations and decelerations.

VIII. CONCLUSION

In this work, we enable fine-grained and robust fast
movement tracking using acoustic signals on COTS mobile
devices for human arms tracking. To achieve this, we identify
several limitations of existing phase-based acoustic motion
tracking, including the phase ambiguity and Doppler shift
caused by fast movement, non-uniform frequency response
compensation, and low SNR. We gain the following important
insights: (i) Fast movement may cause phase measurements
to be under-sampled and introduce ambiguity in the phase
change. Performing phase unwrapping on the first-order phase
derivative can avoid the under-sampling issue caused by fast
movement for human mobility. (ii) To enhance the SNR,
we can add up the signals in consecutive time intervals
after compensating for the phase shift during these time
intervals. We can find the best phase shift to compensate
by maximizing the entropy of the error function between
our measurement and estimation. (iii) Hardware frequency
response varies across devices. We find that compensating
the phase response is more reliable than compensating the
amplitude response since the latter may significantly increase
the noise. (iv) LSTM-based distance recovery algorithm com-
bines the history information of phase measurement and
coarse-grained time delay to robustly reconstruct the distance
of the target, largely extending the working range of SWIFT-
TRACK+. We develop effective solutions for each issue and
experimentally demonstrate their effectiveness using Android
implementation. We evaluate SWIFTTRACK+ with the velocity
ranging from 5cm/s to 240cm/s and observe a median error
of 0.63cm.
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