
23

Device Fingerprinting with Magnetic Induction Signals

Radiated by CPU Modules

XIAOYU JI, Zhejiang University

YUSHI CHENG, Tsinghua University

JUCHUAN ZHANG, YUEHAN CHI, and WENYUAN XU, Zhejiang University

YI-CHAO CHEN, Shanghai Jiao Tong University

With the widespread use of smart devices, device authentication has received much attention. One popular

method for device authentication is to utilize internally measured device fingerprints, such as device ID,

software or hardware-based characteristics. In this article, we propose DeMiCPU, a stimulation-response-based

device fingerprinting technique that relies on externally measured information, i.e., magnetic induction (MI)

signals emitted from the CPU module that consists of the CPU chip and its affiliated power-supply circuits.

The key insight of DeMiCPU is that hardware discrepancies essentially exist among CPU modules and thus the

corresponding MI signals make promising device fingerprints, which are difficult to be modified or mimicked.

We design a stimulation and a discrepancy extraction scheme and evaluate them with 90 mobile devices,

including 70 laptops (among which 30 are of totally identical CPU and operating system) and 20 smartphones.

The results show that DeMiCPU can achieve 99.7% precision and recall on average, and 99.8% precision and

recall for the 30 identical devices, with a fingerprinting time of 0.6 s . The performance can be further improved

to 99.9% with multi-round fingerprinting. In addition, we implement a prototype of DeMiCPU docker, which

can effectively reduce the requirement of test points and enlarge the fingerprinting area.

CCS Concepts: • Security and privacy→ Security services;

Additional Key Words and Phrases: Device fingerprinting, electromagnetic radiation, CPU

ACM Reference format:

Xiaoyu Ji, Yushi Cheng, Juchuan Zhang, Yuehan Chi, Wenyuan Xu, and Yi-Chao Chen. 2021. Device Finger-

printing with Magnetic Induction Signals Radiated by CPU Modules. ACM Trans. Sen. Netw. 18, 2, Article 23

(December 2021), 28 pages.

https://doi.org/10.1145/3495158

This work was supported by China NSFC Grant nos. 61925109, 62071428, 61941120, ZJNSF Grant no. LGG19F020020, and

CPSF Grant no. BX2021158. This article is an extended version of the work published at ACM CCS in London, UK, in

November 2019 [12].

Authors’ addresses: X. Ji, J. Zhang, Y. Chi, and W. Xu, Zhejiang University, Hangzhou, 310027, CN; emails: {xji,

juchuanzhang, johannc}@zju.edu.cn, xuwenyuan@gmail.com; Y. Cheng (corresponding author), Tsinghua University,

Beijing, 100084, CN; email: yushithu@mail.tsinghua.edu.cn; Y.-C. Chen, Shanghai Jiao Tong University, Shanghai, 200240,

CN; email: yichao@sjtu.edu.cn.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1550-4859/2021/12-ART23 $15.00

https://doi.org/10.1145/3495158

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

https://doi.org/10.1145/3495158
mailto:permissions@acm.org
https://doi.org/10.1145/3495158

23:2 X. Ji et al.

1 INTRODUCTION

Mobile devices have emerged as the most popular platforms to assist daily activities and exchange
information over the Internet [59]. According to Gartner [19], there are more than 11 billion
phones, tablets, and laptops by the end of 2018. Along with the rapid growth is the rising de-
mand of device authentication: It is useful for applications to recognize whether they are executing
on the same device as the previously registered one, e.g., during payments, to ensure the safety of
personal privacy or cyber assets.

One of the strategies for device authentication is device fingerprinting. Existing device finger-
printing solutions are mainly based on internal device information (e.g., IMEI (device ID), serial
numbers of laptops) or built out of software or hardware characteristics. Software-based finger-
prints utilize wireless traffic patterns [43], browser properties [58], and so on, while hardware-
based fingerprints utilize hardware characteristics such as clock skews [32, 44], accelerome-
ters [16], gyroscopes [3], microphones [14, 62], cameras [17, 36], and Bluetooth implementation [1].

In this article, we propose to fingerprint devices exploiting the featured electromagnetic in-

terference (EMI) signals radiated by CPU modules on devices, which we call CPU fingerprints.
The advantage of such a CPU fingerprint is that it can be measured externally rather than inter-

nally by the operating system (OS), which could be a useful feature for applications on external
devices to authenticate the devices. In addition, a CPU module is indispensable for almost all mo-
bile or smart devices, and thus the CPU fingerprint is likely to be more universal compared with
aforementioned built-in sensor-based approaches.

Based on it, we design DeMiCPU, a device fingerprinting scheme consisting of a trusted DeMiCPU
server, a stimulation program on the target device, and a trusted stand-alone DeMiCPU capturing
module with a built-in magnetic sensor (in short, DeMiCPU sensor), as shown in Figure 1, and it
works as follows: Once an application requests for device fingerprinting, DeMiCPU starts the stimu-
lation program and the DeMiCPU sensor measures and packages the measurements with protection
and uploads the packaged measurements to the DeMiCPU server for fingerprint matching. An at-
tacker may try to impersonate a target device by emulating the EMI radiated by its CPU module,
but it is almost impossible to produce an EMI pattern close enough to that of the target device, as
analyzed in Section 8.
DeMiCPU is promising yet challenging. First, EMI spans a wide spectrum, including high fre-

quency that may produce data at the rate ofGbps . Such computation and communication costs are
unacceptable, especially for the DeMiCPU sensor. Second, all electronic components inside a device
emit EMI and their operation status affects the level of EMI. It is difficult, if ever possible, to con-
trol the status of each component across various attempts of measurement. Besides, it is unclear
whether the EMI radiated from the same device at various time instants or locations is consistent
and the ones from different devices are distinct. Last but not least, the EMI radiation may contain
a large amount of noise, and how to extract fingerprints efficiently out of the noisy EMI radiation
is nontrivial. This article addresses aforementioned challenges and validates the feasibility of CPU
fingerprint.

Which frequency to measure and how to measure? After careful analysis and experimental val-
idation, we choose low-frequency magnetic induction (MI) signals (<100 kHz). EMI gener-
ated by electronic components includes both electromagnetic radiation (EMR) in the far field
(> two wavelengths) and MI in the near field (< a wavelength). Since EMR is the main cause that
affects interoperability of devices, it is suppressed for electromagnetic compatibility [21]. Yet, MI
signals dominate the near field and do not propagate as far as EMR. Being less a concern of interfer-
ence, MI signals are not intentionally suppressed and serve as an excellent candidate for extracting
hardware fingerprints.

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

Device Fingerprinting with Magnetic Induction Signals Radiated by CPU Modules 23:3

Fig. 1. Based on CPU fingerprints, DeMiCPU provides the ability to fingerprint devices for software and

applications.

How to induce consistent MI? It is almost impossible to control the status of each component, and
thus we focus on controlling the one that emits the majority of MI signals, i.e., the CPU module
that consists of the CPU chip and its affiliated power-supply circuits. In this way, MI signals con-
tributed by other components on the motherboard can be neglected. CPU fingerprints are made
possible, because even for devices of the same model, CPU modules are discrepant due to hardware
diversities introduced during the manufacturing process. However, various applications may lead
to various MI signals of the CPU module (as our experiments confirmed). To ensure that the CPU
load and operation status are similar across measurements, we analyze the cause and influencing
factors of the emitted MI signals and design a set of instructions to generate an identical 100%
utilization stimulation to the CPU module.

How to extract fingerprints despite of noise? To distinguish the subtle discrepancies of CPU mod-
ules when the measurement of MI signals could be noisy, we remove the effects of the geomag-
netic field and environmental noise in the pre-processing phase and employ Short Time Fourier

Transform (STFT) and Principal Component Analysis (PCA) for feature extraction, which
serves as the fingerprint of the device. To further ensure high accuracy, reliability, and usability in
DeMiCPU, we compare 10 common classifiers to elect the appropriate classification algorithm. In
summary, our contribution includes the following:

• We propose to fingerprint mobile devices by monitoring the MI signals emitted from the CPU
module. To the best of our knowledge, this is the first work to attempt device fingerprinting
based on the fingerprints of CPU modules.
• We design an efficient MI-based fingerprinting scheme consisting of identical stimulation

generation, effective feature extraction, and valid fingerprint matching, which can identify
devices reliably and accurately.
• We validate DeMiCPU on 90 mobile devices, including 70 laptops and 20 smartphones. The

results show that DeMiCPU can achieve 99.7% precision and recall on average, and 99.8% pre-
cision and recall for 30 identical devices, with a fingerprinting time of 0.6 s . Both precision
and recall can be further improved to 99.9% with multi-round fingerprinting.
• We implement a prototype of DeMiCPU docker, which can effectively reduce the requirement

of test points and enlarge the fingerprinting area.

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

23:4 X. Ji et al.

2 BACKGROUND

In this section, we begin with the principle of magnetic signals, then elaborate how CPU modules
can produce magnetic signals, and finally explain why magnetic signals from CPU modules are
differentiated in nature.

2.1 Magnetic Induction of Electronic Devices

All electronic components emit EMI when currents flow. EMI emitted from electronic components
(e.g., CPUs, fans, GPUs) includes two types: high-frequency EMR signals and low-frequency MI
signals. EMR refers to electromagnetic waves that are synchronized oscillations of electric and
magnetic fields and propagate at the speed of light. High-frequency EMR waves are mainly at an
order of MHz or above, and are always effectively reduced or shielded [21] to eliminate interfer-
ence with other electronic components or devices. By contrast, MI signals are non-radiative waves
generated by currents and are typically not intentionally suppressed. In addition, MI signals have
a relatively larger strength and a lower frequency than EMR, and thus can be measured by low-
frequency magnetic sensors. Therefore, MI signals are good representatives of EMI emitted from
a device.

2.2 The CPU Module

The CPU module of a device refers to the CPU chip and its affiliated DC/DC converter. The
computation-intensive nature of the CPU chip draws heavy currents from the DC/DC converter,
which generate strong MI signals.

CPU. A CPU chip consists of hundreds of millions of CMOS (complementary metal oxide

semiconductor) transistors arranged in a lattice form, which performs basic arithmetic, logical,
control, and input/output (I/O) operations. The CPU current depends on the power consumption
of the CMOS circuits, which has three components: static power dissipation, short-circuit power
dissipation, and dynamic power dissipation, mathematically denoted as follows [49]:

Pcmos = Pstatic + Pshor t−circuit + Pdynamic . (1)

Pstatic , a.k.a., leakage power dissipation, is a steady and constant energy cost caused by the leakage
currents of transistors. Pshor t−circuit arises when two transistors in a CMOS gate are on at the
same time, which creates a short circuit from the voltage supply to the ground and thus consumes
energy. Pdynamic is caused by the switching of CMOS gates. Energy consumption of a CPU mainly
depends on the dynamic power dissipation of the CMOS lattice, which is roughly equal to the
energy change in the output capacitance of CMOS transistors. Average power consumption of a
multi-core CPU can be modeled as follows [50]:

Pavд =

N∑

i=1

CiV (α)2AF (α)

2
, (2)

where N is the number of CPU cores. Ci , A, V , and F are influencing factors, with their meanings
summarized in Table 1.V and F are further related to the CPU loadα due to the power-management
technique DVFS (dynamic voltage and frequency scaling) [35] applied by modern devices.
DVFS decreases the clock frequency and allows a corresponding reduction in the supply voltage for
energy saving. For example, for a ThinkPad T440p laptop,V and F are 0.899V and 3, 095.95 MHz
when the CPU load is 100%, and they drop to 0.668 V and 798.95 MHz when the CPU becomes
idle (2%–3% load on average). As all the four factors are hardware related and CMOS circuits are
various across CPUs, those factors are distinct from device to device (detailed in Section 2.3).

DC/DC converter. Due to the difference of voltage levels between the CPU and the power-
supply system (either a battery or an external power source), a DC/DC converter is placed close to

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

Device Fingerprinting with Magnetic Induction Signals Radiated by CPU Modules 23:5

Fig. 2. An illustration of a simplified CPU module. A DC/DC converter is connected to the CPU chip for

voltage conversion. The inductor in the DC/DC converter can produce strong MI signals when large currents

flow through it.

Table 1. Impact Factors of CPU Power Consumption

Pavд
Factors

Meaning
H α

Ci � CMOS capacitance, related to
the transistor size and the wire length

V � � Supply voltage to CPU

A � Average switching frequency of transistors

F � � Clock frequency

H: Hardware related. α : CPU load.

the CPU chip to convert a high voltage to a low one [13]. In Figure 2, we show the key components
of a DC/DC converter and its relationship with the CPU chip. In principle, the high-frequency
switch in the DC/DC converter works in a duty-cycle mode to generate a lower voltage. Electronic
components including the capacitors, inductors, and diodes are utilized to make the output voltage
smooth and continuous. The regulated voltage and currents are then fed into the CPU chip to
satisfy its computation requirements.

In short, CPU chips nowadays exploit a reduced voltage for energy efficiency, but incur heavy
currents when performing computation-intensive tasks. The heavy currents flowing through the
CPU module generate strong MI signals, which are further amplified by the inductor inside the
DC/DC converter, due to the effect of coils.

2.3 CPU Module Discrepancy

Hardware discrepancies exist among devices, or more precisely, their CPU modules. For CPUs of
various models, all the four factors Ci , V , A, and F that affect the CPU power consumption can
be different due to the discrepancies in hardware structure and specification. Even for CPUs of
the same model, e.g., Intel Core i5-3210M for ThinkPad T440p laptops, discrepancies exist due to
the imperfections introduced during the manufacturing process. As shown in Table 1, manufac-
ture techniques have influence upon three factors Ci , V , and F , i.e., the transistor sizes, working
voltages, and working frequencies of CPU chips can be distinct. Besides, the DC/DC converter of
the CPU module further enlarges the differences. Therefore, MI signals from CPU modules of the
same or various models are distinct due to the hardware discrepancies across devices.

In summary, MI signals from CPU modules are different in nature and can serve as a candidate
of device fingerprints. In addition, CPU load α affects MI signals, since it influences V and F . As

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

23:6 X. Ji et al.

Fig. 3. Investigation of MI signals emitted from the T440p laptop. (a) The heatmap of measured MI signal

strength. (b) Physical structure of the laptop.

a result, MI signals can be strengthened by increasing the CPU load. Thus, to maintain a stable
observation of MI signals, the CPU load shall be accurately controlled.

3 PRELIMINARY ANALYSIS

In this section, we verify the feasibility of CPU fingerprints empirically. As shown in Figure 10,
we collect MI signals emitted from the CPU modules with a magnetic-field sensor DRV425 [27]
from Texas Instruments (TI), and conduct AD conversion with a data acquisition (DAQ) card
U2541A [30] from Keysight at a sampling rate of 200 kHz. Each collection lasts for 1 s (0.5 s is
shown to be sufficient to fingerprint a device in Section 5).

3.1 MI Signals from CPU Module

Does the CPU module produce the strongest MI? To verify whether the CPU module emits
the strongest MI signals among all components, we execute a while(1) loop (in C++) to generate
a CPU utilization of 100%, and we measure the MI signal strength by placing the sensor on various
spots (33 spots in total) of a Lenovo ThinkPad T440p laptop’s surface (device No. 31 in Table 2). We
plot the heatmap of the MI signals measured across the laptop’s surface in Figure 3(a), from which
we can find that the strongest MI signals are observed at “S” and “D” keys. Dismantling the laptop
reveals that two inductors of the DC/DC converter that powers the CPU chip are located right
below these two keys, as shown in Figure 3(b). This indicates that the CPU module, specifically
the DC/DC converter, produces the strongest MI signals when the CPU is under a high load.

Does the CPU load affect the MI signals? To understand whether the variation of the CPU
load affects MI signals emitted from the CPU module, we force the CPU to work in a duty-cycle
mode at a frequency of 5 Hz, i.e., alternating between a 100% utilization and an idle mode at an
interval of 100ms . Throughout the experiments, the sensor was placed above the CPU module, i.e.,
on S and D keys, to measure the emitted MI signals. The results shown in Figure 4 confirm that
the CPU load does affect the MI signals. Thus, it is important to create a consistent software stim-
ulation to ensure the same CPU load such that the fingerprints generated from the CPU module
are consistent for the same device.

Do other components affect the MI signals? Modifying the status of other computer compo-
nents may lead to variation of the MI signals. However, MI signals generated by others attenuate
rapidly with distance due to the near field effect. We observe no noticeable difference between the
MI signals collected right above the CPU module when the fan was turned on and off. As a result,
DeMiCPU does not control other components during device fingerprinting.

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

Device Fingerprinting with Magnetic Induction Signals Radiated by CPU Modules 23:7

Fig. 4. MI signal is highly related to the CPU

working period.

Fig. 5. Histograms of MI signals before and after

exchanging CPUs.

3.2 Evidence of CPU Fingerprint

To explore the existence of CPU fingerprint, we conduct an experiment with five laptops, which
are two Lenovo ThinkPad T440p (T440p-1 and T440p-2, for short), Dell XPS 13, Lenovo R720, and
Dell XPS 14. Detailed specifications of these laptops (Device No. 31, No. 32, No. 61, No. 49, and
No. 62) are summarized in Table 2, among which two laptops (T440p-1 and T440p-2) are from the
same model and installed with the same operating system and the rest are of different models.

We execute the while(1) program to keep the CPU at a 100% utilization and measure MI signals
above the CPU module of each laptop. We then perform Fast Fourier Transform (FFT) on the
collected MI signals and plot their one-dimensional histograms in Figure 6, with a logarithmic bin
size of 100.1. The histogram represents the frequency distribution of the MI signals, from which we
can observe distinct “patterns” for the five laptops in the frequency range from 20 Hz to 10 kHz.
Especially, laptops of different models show more discrepancies compared with those of the same
model. Nevertheless, the two T440p laptops remain distinguishable even only with one histogram
feature.

The above findings shed light on the existence of CPU fingerprints. However, to make the fin-
gerprint robust and accurate, especially for devices from the same model, more features in both
time and frequency domains should be investigated to enhance the fingerprint.

3.3 What Contributes to CPU Fingerprint?

To understand whether the fingerprint is created by the CPU chip, the DC/DC converter, or the
combination of both, we exchange the CPUs of the two T440p laptops and obtain two “new” lap-
tops (T440p-1 with CPU from T440p-2 and T440p-2 with CPU from T440p-1). Similar to previous
experiments, the CPU utilization is set to 100% during collection and MI signals are measured
above the CPU module before and after swapping the CPUs. The results in Figure 5 show that
MI signals for four configurations are all different, which indicates that the fingerprint originates
from the combination of the CPU chip and its affiliated DC/DC converter, i.e., the CPU module.

3.4 Temporal and Spatial Consistency

The MI signal from a device should be consistent across time and space to serve as a robust finger-
print. To investigate the temporal consistency, we collect 30 MI signals from the T440p-1 laptop
at five time instants across two days, i.e., the first three instants are within one day (morning, af-
ternoon, and evening) and the other two are in the next day (morning and evening). The T440p-1
laptop is set to 100% utilization and one-second MI signals are collected each time. The results
depicted in Figure 7 indicate that MI signals remain consistent regardless of time.

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

23:8 X. Ji et al.

Fig. 6. Histograms of MI signals from five laptops. Even for the two laptops of the same model, i.e., T440p-1

and T440p-2, the MI signals show discrepancies.

Fig. 7. Histograms of MI signals at five

instants.

Fig. 8. Histograms of MI signals at three

locations.

To investigate the spatial consistency, we collect 30 MI signals from the T440p-1 laptop at three
locations (one in a lab, two at home; and the two places are about three kilometers apart). Note
that we do not intentionally avoid or remove metal and magnetic materials around the collecting
device during experiments. As a result, due to the impact of the earth’s magnetic field and ambient
noise (especially in the lab, with numerous electronic devices surrounding), the initial magnetic
magnitude of the sensor is geo-spatial dependent. However, the strength of the earth’s magnetic
field and ambient noise is relatively static at a specific spot and thus mainly contributes to the
constant part of the collected MI signals. As a result, the FFT operation shall have eliminated the
impact of the earth’s magnetic field as well as the ambient noise. The results in Figure 8 also
validate that the frequency-domain MI signals remain consistent regardless of locations.

All these experiments provide strong evidence that CPU modules can produce strong MI signals
that maintain good distinguishability and consistency, and the MI signals from CPU modules serve
as promising device fingerprints.

4 DESIGN

In this section, we describe the three sub-modules of the overall DeMiCPU system: (1) Fingerprint
generation; (2) Fingerprint extraction; (3) Fingerprint matching.

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

Device Fingerprinting with Magnetic Induction Signals Radiated by CPU Modules 23:9

Fig. 9. Structure of the MI signal, including a 0.1 s preamble and a 0.5 s fingerprinting sample.

4.1 DeMiCPU Fingerprint Generation

To obtain MI measurements that produce consistent fingerprints, it is important to solve the fol-
lowing two challenges:

• How to stimulate the CPU such that it generates the MI signal that can produce a consistent
device fingerprint?
• How to collect and identify the MI signal segment that maps to the one under stimulation

even if an attacker may disturb the communication between the stimulation program and
the trusted capturing sensor?

To address these two challenges, we design the stimulation program such that it produces the
MI signal trace in Figure 9, which is composed of a preamble and a fingerprinting signal that are
both generated by controlling the CPU load in a proactive way. As thus, DeMiCPU only needs to
transmit a signal as short as 0.6 s for fingerprinting.

4.1.1 Preamble. To identify the MI signal segment that is under stimulation, a preamble is used
for the trusted capturing sensor to detect the start of the fingerprinting signal. DeMiCPU stimulates
the device such that a unique MI pattern is generated as a preamble, thereby allowing the sensor
to identify it with cross-correlation. We realize the preamble by manipulating the CPU load and
generate a sequence of [1, 0, 1, 0] (“1” for full-utilization mode and “0” for idle mode) as shown in
Figure 9, which lasts for 100ms in total.

4.1.2 Stimulating CPU. The strength of the MI signals emitted from the CPU module depends
on the current, which is related to the CPU load. To obtain stable MI signals to produce CPU
fingerprints, we stimulate the CPU by controlling its utilization ratio. Without loss of generality,
the total CPU utilization is the sum of CPU utilization from all running processes, including both
system and user processes, which can be modeled as follows:

CPU _util = Sys_processes +User_processes . (3)

Utilization Ratio. One intuitive question is what utilization ratio to use, 100%, 50%, or other
values? In fact, it is difficult to precisely control the utilization, since (1) it is hard to accurately
restrict system and user processes to a certain level, and (2) the CPU scheduling policy further
worsens the problem. For instance, 50% CPU utilization means that the CPU works in five clock
cycles and is idle in the remaining five. Without inspecting and modifying the scheduling algo-
rithm, it is almost impossible to ensure that the CPU behaves the same in all clock cycles.

To address it, we choose to keep the CPU running in the full-utilization (100%) mode to ob-
tain an identical output. Another benefit of such an implementation is that higher CPU utilization
generates stronger MI signals, which helps to lighten the impact of ambient noise. We achieve

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

23:10 X. Ji et al.

the full-utilization mode by invoking CPU-consuming instructions, such as while(1) in our im-
plementation. As thus, system processes, DeMiCPU stimulation process, and other user processes
together compose the 100% utilization.
DeMiCPU Priority. During fingerprinting, however, other user processes, i.e., background appli-

cations, are not likely to be the same, which may render the stimulation nonidentical. To eliminate
the influence of other user processes, we assign a superior priority to the DeMiCPU stimulation pro-
gram, which is higher than the base one of other user processes yet lower than that of the system
processes, since they only account for 1%–2% CPU utilization on average.

Mainstream operating systems such as Windows, Linux, and Mac OS X are all able to support
such an implementation. For instance, Windows implements a priority-driven, preemptive sched-
uling system, where the highest priority runnable threads are executed first. Each thread, which is
the smallest unit of program execution flow, has a base priority as a function of its process priority
class and relative thread priority. Normally, user applications and services start with a base priority
level 8, i.e., both process and thread priorities are normal [47]. Thus, we shall at least assign the
DeMiCPU stimulation program with a priority level higher than that.

In particular, we examine the highest priority of the user threads, which is usually a priority
level 8, as mentioned before. Then, we assign a higher priority to the DeMiCPU thread, e.g., a normal
process priority but an above normal thread priority, i.e., a priority level 9, to eliminate the impact
of other user processes. In addition, since modern CPU chips support multi-core and multi-thread,
we bind a stimulation thread to each available logical processor core, including the virtual ones
created by Hyper-Threading [37]. As thus, the CPU utilization under stimulation is as follows:

CPU _util_stimu = Sys_processes + DeMiCPU = 100%. (4)

Feedback. In general, such a design is able to generate an identical stimulation. However, in
a rare case, a thread with a higher priority may be launched during fingerprinting, making the
stimulation different than planned. To further guarantee the validity of the DeMiCPU stimulation,
we introduce a feedback mechanism, i.e., examining system logs after stimulation to confirm that
DeMiCPU exclusively uses the CPU during fingerprinting. If not, then DeMiCPU abandons the current
measurements and triggers a second collection. Moreover, the CPU frequency may drop due to a
high CPU temperature or low battery. Thus, the feedback mechanism examines the CPU working
frequency before and during stimulation. If a previous or midway frequency drop is detected, then
DeMiCPU abandons the current measurements and defers its collection till the CPU recovers from
the low frequency mode, as revealed in Algorithm 1.

In this way, we minimize the influence of software environment and output stable fingerprinting
signals, as shown in Figure 9.

4.2 DeMiCPU Fingerprint Extraction

4.2.1 Pre-processing. Preliminary analysis confirms the temporal and spatial consistency of the
MI signals in the frequency domain. However, the time-domain MI signal is geo-spatial-dependent
due to the impact of the earth’s magnetic field and ambient noise. As the strength of the earth’s
magnetic field and ambient noise is relatively static at a specific spot, we assume it mainly con-
tributes to the constant part of the collected MI signals. To eliminate its impact, we normalize the
raw MI signal, i.e., the measured signal in Figure 9, before extracting features.

Denote the measured signal as B, we normalize B to obtain the pre-processed MI signal M for
feature extraction as follows:

M =
B −min(B)

max (B) −min(B)
. (5)

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

Device Fingerprinting with Magnetic Induction Signals Radiated by CPU Modules 23:11

ALGORITHM 1: DeMiCPU Stimulation

1 CPU _Frequency ← Get_CPU_Freqency()

2 if CPU _Frequency > threshold_1 then

3 C_priority ← Get_Current_Highest_Priority()

4 //get the highest priority level of running user threads

5 DeMiCPU _priority ← Gen_Priority(C_priority)

6 cpunum← Get_CPU_Core_Num()

7 // get the number of CPU logical processors

8 for i ∈ ranдe (1, cpunum) do

9 hThread (i) ← CreateThread()

10 // create the ith DeMiCPU stimulating thread

11 SetThreadPriority(hThread (i), DeMiCPU _priority) // set the ith DeMiCPU stimulating thread

with the generated DeMiCPU priority level

12 C_Thread ← GetCurrentThread ()

13 C_Mask = 0x0001 ∗ 2i−1

14 SetThreadAffinityMask (C_Thread , C_Mask)

15 // bind the ith DeMiCPU stimulating thread to the ith CPU logical processor

16 preamble_gen()

17 fingerprinting_signal_gen()

18 Stim_Util ← Get_Util_Feedback()

19 Stim_Freq← Get_Freq_Feedback()

20 if Stim_Util < threshold_2 then

21 DeMiCPU Stimulation

22 if Stim_Freq < threshold_1 then

23 sleep(5)

24 DeMiCPU Stimulation

25 else

26 sleep(5)

27 DeMiCPU Stimulation

Note that although the above solution is designed for scenarios where ambient MI signals are rela-
tively static, we argue it also works with time-varying magnetic signals such as power frequency
interference from nearby electrical equipment, because the time-varying MI signals from other
devices quickly attenuate and thus have little influence.

4.2.2 Feature Extraction. For each pre-processed signal M , we extract a feature vector with
Short-time Fourier Transform (STFT) [2] and Principal Component Analysis (PCA) [56].
During feature extraction, we first divide the pre-processed signal M into overlapped time
intervals and conduct Fast Fourier Transform (FFT) on each interval to extract time-variant
features in the frequency domain. Then, we conduct PCA on the FFT result and obtain the first
PCA component to aggregate features in different frequency scales. Finally, we sequentialize the
PCA component of each time interval to construct a feature vector as the device fingerprint.

Short-time Fourier Transform. For each pre-processed signal M , we divide it into time inter-
vals using a sliding window with an interval size of w and a step size of 0.5 ∗ w. Then, each time
interval is padded with “0” to the length of 2 ∗w , before conducting FFT to get the STFT spectro-
gram. We calculate the abstract value of the FFT results and obtain the first half of them. As thus,

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

23:12 X. Ji et al.

for each pre-processed signal M , we get a t × l spectrogram matrix S , where t rows correspond to
t time intervals, and l columns are the FFT results of that time interval. In practice, we setw = 1.6
milliseconds.

Principal Component Analysis. We then use PCA to track the correlation of FFT results
among different frequencies in three steps: data preparation, coefficient calculation, and feature
vector construction.

(1) Data Preparation. With STFT, each pre-processed signal M is transformed into a spectro-
gram matrix with t rows. For each time interval, we extract its FFT results from aforementioned
spectrogram matrices to construct a new interval matrix H .

(2) Coefficient Calculation. For each interval matrix Hi , we calculate its principal component
coefficient matrix Ci . Each column of Ci contains coefficients for one principal component and
the columns are arranged in the decreasing order of component variance. We then obtain the first
principal component of Hi , i.e., the first column of Ci , for feature vector construction.

(3) Feature Vector Construction. We conduct PCA on the spectrogram matrix S to build the
feature vector V . The ith element of V is calculated as:

V (i) =
l∑

j=1

S (i, j) ∗Ci (1, j), (6)

where l is the column number of the spectrogram matrix S as well as the length of FFT results for
each time interval.

In this way, for a pre-processed MI signal M from a device, we extract a feature vector V with
t elements, where t is the number of time intervals that M is divided into. Hereafter, we define
the feature vector V as the fingerprint of the device. We envision that the fingerprint retains the
time-varying frequency features of the MI signals.

Compared with the LibXtract-based feature extraction method used in our prior work [12], the
PCA-based feature extraction method proposed in this article has the same computation complex-
ity of O (n log n) and a reduced computation time of 20.2ms for extracting a fingerprint (reduced
by 12% compared with the prior method with the same AMD Ryzen 5 3600 6-Core Processor).

4.3 DeMiCPU Fingerprint Matching

The DeMiCPU cloud server utilizes machine learning techniques to classify each trace with the
extracted feature vector V . Specifically, we consider the fingerprint matching problem with two
views: (1) classification problem that can be addressed by supervised learning techniques and
(2) anomaly detection problem that can be addressed by unsupervised techniques. To select the ap-
propriate machine learning algorithm, we compare 10 commonly used supervised classifiers and
3 unsupervised anomaly detectors, which are (1) Logistic Regression, (2) Gaussian Naive Bayes,
(3) K-nearest Neighbors, (4) Linear Discriminant Analysis, (5) Quadratic Discriminant Analysis,
(6) Decision Tree, (7) Support Vector Machine, (8) ExtraTrees, (9) Random Forest, (10) Gradient
Boosting, (11) Elliptic Envelope, (12) One-class Support Vector Machine, and (13) Isolation Forest.
The detailed results can be found in Figure 11. For the sake of high classification accuracy and
robustness over a single algorithm, we employ an ensemble supervised classification approach
ExtraTrees [22], which fits a number of randomized decision trees on various sub-samples of the
dataset and uses averaging to improve prediction accuracy and avoid over-fitting.

Training. During the training process, for a specific device, k traces from it are utilized as the
positive class, and k traces from each of the rest devices serve as the negative class to train a
binary classifier, as shown in Algorithm 2. Therefore, for n devices, n binary classifiers are trained
in total. In real-world deployment, we may need to extend the classification system when a new
device comes and registers. Under that circumstance, the feature vectors of the new device are

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

Device Fingerprinting with Magnetic Induction Signals Radiated by CPU Modules 23:13

ALGORITHM 2: DeMiCPU Training

Input:

• n: number of devices

• t : number of elements in each fingerprint

• Vi = {Vi1,Vi2,Vi3, ...,Vik }, i ∈ (1,n): a set of k fingerprints for each device

Output: Ci : binary classifier for each device

1 for i ∈ ranдe (1,n) do

2 traindata = []

3 form ∈ ranдe (1,n) do

4 for j ∈ ranдe (1,k) do

5 if m==i then

6 Vmj .append (′1′)

7 else

8 Vmj .append (′0′)

9 traindata.append (Vmj)

10 train_X = traindata[:, 0 : t]

11 train_Y = traindata[:,−1]

12 Ci = ExtraTreesClassi f ier . f it (train_X , train_Y)

extracted and trained to obtain a new binary classifier without the need of retraining the original
n classifiers. The new classifier is finally incorporated with the existing classifiers to constitute a
new classification system.

Matching. When matching, the server analyzes the fingerprint signal from the device to be
identified and extracts its feature vectorV . Then, the server feeds it to the classifier of which class
the device claims to be, to verify its identity.

5 EVALUATION

To evaluate the performance of DeMiCPU, we have conducted experiments with 70 laptops and
20 phones across six months, among which 30 laptops are of the same model. The detailed infor-
mation of each device is shown in Table 2. In summary, the performance of DeMiCPU is:

• DeMiCPU achieves 99.7% precision and recall for both laptops and phones, and 99.8% precision
and recall for 30 identical devices with one-round fingerprinting, and the performance can
be further improved to 99.9% with multi-round fingerprinting.
• DeMiCPU can operate with little influence from operating systems, background applications,

fan on/off states, or CPU temperature.
• DeMiCPU supports low sampling rate, which makes it a universal approach running on ubiq-

uitous smart devices.

5.1 Experiment Setup

With the experiment setup described in Table 2 and Figure 10, we collect 100 MI traces for each of
the 90 devices and each trace lasts for 0.5 s (excluding the preamble). The settings for the laptops
and smartphones are as follows:

Stimulation Program Setup. We implement the stimulation program in Algorithm 1 on five
operating systems, i.e., Windows (in C++), Linux (in C++), Mac OS (in Java), Android (in Java), and

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

23:14 X. Ji et al.

Table 2. Experimental Devices and Their Detailed Specifications

No. Manuf. Model OS
CPU Parameters

Model C‡ T† TP�

1–30 Lenovo ThinkPad T430 Win 7 i5-3320M 2 4 S
31–33 Lenovo ThinkPad T440p Win 7 i5-4210M 2 4 S

34 Lenovo G480 Win 7 i5-3210M 2 4 R
35 Lenovo G480 Win 10 i5-3210M 2 4 R
36 Lenovo ThinkPad X201 Win 10 i5-540M 2 4 F6
37 Lenovo ThinkPad T440 Debian i7-4500U 2 4 N
38 Lenovo ThinkPad W520 GNOME i7-2760QM 4 8 E
39 Lenovo ThinkPad Edge E431 Win 10 i7-3632QM 4 8 S
40 Lenovo ThinkPad Edge E530 Win 10 i5-3210M 2 4 S
41 Lenovo IdeaPad Y470 Win 7 i5-2450M 2 4 E
42 Lenovo IdeaPad Y485 Win 7 A8-4500M 4 4 F5
43 Lenovo Yoga2 13 Win 10 i5-4210U 2 4 F4
44 Lenovo Yoga 710 Win 10 i5-6200U 2 4 O
45 Lenovo U430P Win 10 i5-4200U 2 4 F1
46 Lenovo Erazer Z410 Win 10 i7-4702MQ 4 8 6
47 Lenovo E47a Win 7 i5-2520M 2 4 S
48 Lenovo X200 7455 GNOME Intel P8600 2 2 F
49 Lenovo R720 Win 10 i5-7300HQ 4 4 7

50–51 Apple MacBook Air A1466 OS x i5-4260U 2 4 W&E
52 Apple MacBook Pro A1707 OS x i7-6920HQ 4 8 W&E
53 Apple MacBook Pro A1502 OS x i5-4278U 2 4 C
54 Dell Inspiron N4050 Win 7 i3-2350M 2 4 F
55 Dell Inspiron N5110 Win 7 i5-2450M 2 4 F
56 Dell Inspiron 14 7460 Win 10 i5-7200U 2 4 6
57 Dell Inspiron 15R 5520 Win 10 i5-3210M 2 4 Fn
58 Dell Inspiron 15 7559 Win 10 i5-6300HQ 4 4 F6
59 Dell Latitude E4300 Win XP Intel SP9400 2 2 F
60 Dell Latitude E7440 Win 10 i5-4200U 2 4 E&R
61 Dell XPS13 Win 10 i5-3317U 2 4 6
62 Dell XPS14 L421X Win 10 i7-3537U 2 4 4
63 Asus Eee PC 1201HA Win 7 Intel Z520 1 2 A
64 Asus N46V Win 8.1 i5-3210M 2 4 B&N
65 Asus X450EI323VC-SL Win 10 i5-3230M 2 4 F
66 Acer V5-471G Win 7 i5-3337U 2 4 D
67 HP TPN-Q173 Win 10 i5-6300HQ 4 4 Backspace
68 MSI MS16-H8 Win 10 i7-6700HQ 4 8 Scroll Lock
69 Sony SVT131A11T Win 7 i5-3317U 2 4 X
70 Sony SVT131A11T Win 10 i5-3317U 2 4 X
71 Mi 5 Android 6.0 Snapdragon 820 4 4 BVK∗
72 Mi 5S Android 6.0 Snapdragon 820 4 4 BVK∗
73 Huawei Honor 5X Android 5.1 Snapdragon 616 8 8 BVK∗
74 Huawei Honor 8 Android 6.0 Kirin 950 8 8 BVK∗
75 Huawei Honor V8 Android 6.0 Kirin 950 8 8 BVK∗
76 Huawei P9 Android 6.0 Kirin 955 8 8 BVK∗
77 LG Nexus 5 Android 4.4 Snapdragon 800 4 4 BVK∗
78 LG Nexus 5X Android 6.0 Snapdragon 808 4 4 BVK∗
79 Vivo X7 Android 5.1 Snapdragon 652 4 4 BVK∗
80 Samsung Galaxy S6 Android 5.0 Exynos 7420 8 8 BVK∗
81 Apple iPhone 6 iOS 10.2.1 Apple A8 2 2 BPK•
82 Apple iPhone 6 iOS 11.0.3 Apple A8 2 2 BPK•
83 Apple iPhone 6 Plus iOS 11.1.1 Apple A8 2 2 BPK•

84–85 Apple iPhone 6s iOS 10.3.3 Apple A9 2 2 BPK•
86 Apple iPhone 6s iOS 10.2.1 Apple A9 2 2 BPK•
87 Apple iPhone 6s iOS 11.2.1 Apple A9 2 2 BPK•

88-89 Apple iPhone SE iOS 11.2.1 Apple A9 2 2 BPK•
90 Apple iPhone 7 Plus iOS 10.3.3 Apple A10 4 2 BPK•

A total of 90 devices are used, including 70 laptops and 20 smartphones. Among them, 1–30, 31–33, 50–51, 84–85, and 88–89 are
of the same model and OS, respectively.
‡ C = Core Number. ∗T = Thread Number. �TP = Test Point.
† BVK = Beside Volume Key. •BPK = Beside Power Key.

iOS (in C++), to stimulate the CPU and generate a fingerprinting signal. The lightweight program
is pre-installed on the experimental laptops/smartphones.

Data Collection Setup. We collect MI signals from the 90 devices using a magnetic-field sensor
DRV425 [27] from TI. As shown in Figure 10, the sensor is placed on the surface of laptops or

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

Device Fingerprinting with Magnetic Induction Signals Radiated by CPU Modules 23:15

Fig. 10. Experimental setup. The magnetic sensor is placed on the surface of the target laptop/smartphone

for MI signal collection.

smartphones (test points are shown in Table 2 in detail) for MI signal collection. A data acquisition
(DAQ) card U2541A [30] from Keysight is utilized for AD conversion with different sampling rates,
e.g., 100 Hz, 200 Hz, 1 kHz, and so on. A data processing laptop connects with the DAQ card
through a USB, which locally stores and processes the collected data.

5.2 Performance Metrics

Given an MI fingerprint from a device, DeMiCPU verifies whether it belongs to the device (classifier)
that it claims to be. For each classifier i , we define TPi as the true positives for classifier i , i.e.,
the number of fingerprints that are correctly accepted as i . Similarly, FNi and FPi refer to the
number of fingerprints that are wrongly rejected and wrongly accepted as i , respectively. We define

the standard classification metrics for each classifier i as: Precision(i) = T Pi

(T Pi+F Pi) , Recall (i) =
T Pi

(T Pi+F Ni) , and F1 − score (i) = 2×Pri×Rei

(Pri+Rei) . The final precision, recall, and F1-score for DeMiCPU are

the average of the 90 classes.

5.3 Micro-benchmark Evaluation

In this subsection, we evaluate the impact of classifier choices, operating systems, background
applications, on/off states of fans, temperatures and displacements of test points. Ten devices from
Table 2 are randomly chosen for the micro-benchmark evaluation.

5.3.1 Classifier Choice. To select the appropriate classifier for DeMiCPU, we compare 10 com-
monly used supervised classifiers and 3 unsupervised anomaly detectors, which are (1) Logistic
Regression, (2) Gaussian Naive Bayes, (3) K-nearest Neighbors, (4) Linear Discriminant Analysis,
(5) Quadratic Discriminant Analysis, (6) Decision Tree, (7) Support Vector Machine, (8) ExtraTrees,
(9) Random Forest, (10) Gradient Boosting, (11) Elliptic Envelope, (12) One-class Support Vector
Machine, and (13) Isolation Forest. We employ the 10-fold cross validation to evaluate the classifier
performance, which can combine measures of fit and thus derive a more accurate estimation for
model prediction performance.

We randomly choose 30 traces from each device, feed them into the classifiers, and record the
corresponding accuracy. The results in Figure 11 show that 10 out of 13 classifiers show an F1-score
above 0.9, with the classifier (8) ExtraTrees, (9) Random Forest, and (1) Logistic Regression being
the best three classifiers. Thus, we can assume that the data possesses a good property in terms of
discrepancies, i.e., CPU fingerprints are able to discriminate devices. In the following experiments,
we employ ExtraTrees, since (1) it shows the best accuracy, and (2) it is an ensemble classification
approach that achieves better robustness over a single classification algorithm.

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

23:16 X. Ji et al.

Fig. 11. Micro-benchmark evaluation results of DeMiCPU on five randomly chosen devices.

5.3.2 Operating Systems. A device may install different OSs during its lifetime. To investigate
whether OSs affect DeMiCPU, we install four OSs, which are (1) Windows 7 Home Basic 7601,
(2) Kali Linux 2.0, (3) Windows 8 Professional 9200, and (4) Windows 10 Enterprise 10240 on the
experimental laptops, and conduct experiments under each OS to investigate the impact of OSs.
We train the classifier with traces from one OS and test it under all the four OSs. The results in
Figure 11(b) indicate that with the DeMiCPU stimulation program, the same device can be success-
fully identified across different OSs with precision, recall, and F1-score of 1. It confirms that with
elaborately designed stimulation, OS-associated processes only account for a tiny portion of the
CPU utilization during fingerprinting, which is within the tolerance of DeMiCPU. Thus, we believe
DeMiCPU fingerprint is independent on OSs.

5.3.3 Background Applications. DeMiCPU stimulation is designed to be undisturbed by other
user processes. To evaluate its performance against background applications in practice, we con-
duct experiments on each device with several daily-used applications. They are (1) WeChat, (2) Mi-
crosoft Word, (3) Google Chrome, (4) YouTube, and (5) MATLAB, with statistically increasing CPU
utilization when normally used. We train the classifier using traces with no background applica-
tion and test it using traces with one of the aforementioned background applications, respectively.
The results shown in Figure 11(c) confirm that background applications barely have impact on the
performance of DeMiCPU, since it can preempt the CPU even if user applications run.

5.3.4 Displacement of Test Point. Due to that all electronic components inside a device emit
MI signals, the measuring sensor may capture MI signals from other components when moved

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

Device Fingerprinting with Magnetic Induction Signals Radiated by CPU Modules 23:17

away from the CPU module. To investigate the impact of the test point displacement, we vary
the position of the sensor as follows: Starting from the center of the original test point (depicted
in terms of key positions in Table 2), we gradually move the sensor with a step of 1 mm in four
directions: upwards, downwards, left, and right. The classifier is trained at the original test point
and tested at each changed position. For each displacement, we average the precisions, recalls,
and F1-scores in four directions and show the final results in Figure 11(d). From the results, we
can see that within an offset of 8 mm, DeMiCPU achieves a high accuracy (>99%). That is, a user
can conduct DeMiCPU fingerprinting with a displacement tolerance of around a key size, which is
approximately 10–15mm wide.

5.3.5 Fans. When fingerprinting a laptop, an electric fan aside the CPU module emits MI signals
as well. To investigate the impact of fans, we collect 200 traces from each device with fan on and
off, i.e., 100 traces each. We train the classifier with the fan-on traces and test it with the fan-off
traces. The resulting F1-score is 1, indicating that MI signals from the fan have little influence. We
assume it is because fans have much lower power (several watts) compared with CPUs (tens of
watts), and the large distance (around 10 cm) between fan and CPU makes the MI signal from a
fan quickly attenuate.

5.3.6 Temperature. CPU temperature changes over time and load and might be an influence fac-
tor for DeMiCPU. To investigate, we test DeMiCPU under different CPU temperatures. Note that in
DeMiCPU stimulation, we introduce a CPU frequency check before stimulation, since the CPU pro-
tection mechanism will decrease the CPU frequency when its temperature becomes too high, e.g.,
above 90oC. Thus, DeMiCPU normally works when the CPU temperature is not too high to cause
a frequency drop and we first test DeMiCPU under this range. We train the classifier using traces
collected when CPU temperature is 65oC and test it under the cases of 43oC, 52oC, 60oC, 68oC, and
78oC, respectively. The F1-scores for the five cases are all 1. To further explore the performance
of DeMiCPU under a high temperature, we manually turn off the CPU protection mechanism and
test the system under 90oC. The resulting F1-score is also 1, indicating that DeMiCPU works as well.
Thus, we believe DeMiCPU is robust to CPU temperature changes.

5.4 Overall Performance

In the overall performance evaluation, 100 traces are collected from each device in Table 2, and
the employed classifier is ExtraTrees with a tree number of 100.

5.4.1 Impact of Training Size. In the first set of experiments, we train the system with x traces
and test it with the rest 100−x traces (they are never used for training). x is set to 10, 20, 30, and 40
(correspond to 5, 10, 15, and 20 seconds), respectively, to evaluate the appropriate size of training
data. We calculate the Precision(i) and Recall (i) for each device (class) i and plot their CDFs in
Figures 12(a)–12(d) with different training data size x . Even with 10 training traces (correspond to
5 seconds), 90% of the precisions and recalls are above 96.0% for all the laptops and smartphones.
The average precision and recall are 98.9% and 98.8% for the 70 laptops, and 99.2% and 99.2%
for the 20 smartphones. With the increasing of training data size, both precision and recall are
improved. Given the training size 20, DeMiCPU is able to achieve an average precision and recall
of 99.8% and 99.8% for the laptops, and 99.6% and 99.6% for the smartphones. Besides, when the
training data size further increases, the performance of DeMiCPU approaches 100%. To strike the
balance between usability and accuracy, we choose 20 traces for training, which only amount to
10 s . Training data size is then set to 20 in the rest of the evaluation.

5.4.2 Performance of Devices of Same Model. In addition to the overall performance, users may
pay more attention to the performance of DeMiCPU on devices of the same model. To take a close

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

23:18 X. Ji et al.

Fig. 12. Overall performance of DeMiCPU with different training data sizes (10, 20, 30, and 40).

look, we plot a confusion matrix for devices No. 1–30 (i.e., the 30 ThinkPad T430 laptops) in Fig-
ure 13. These 30 laptops are of the same model and installed with the same operating system, and
thus are more likely to be confused with each other. From the confusion matrix, we can observe
that even for the 30 identical devices, DeMiCPU can achieve comparable performance with an aver-
age precision of 99.8% and an average recall of 99.8%.

5.4.3 Scalability of DeMiCPU. Although it is difficult to evaluate the capability of DeMiCPU with
a very large set of devices, we conduct several experiments in which we increase the number
of tested devices gradually to get a sense of how DeMiCPU scales. With the same settings in the
90-device experiments, we change the total number of tested devices and repeat the experiments.
First, we randomly choose and use 20 devices to obtain the precision and recall of DeMiCPU. Then,
we increase the quantity of devices to 30, 50, 70, and 90 and recalculate the precisions and re-
calls. Table 3 shows how accuracy changes with the increasing number of devices, from which
we can find that the performance of DeMiCPU does not change significantly as the number of de-
vices increases. It provides encouraging signs that DeMiCPU is likely scalable to a large number of
devices.

5.4.4 Impact of Sampling Rate. To investigate the sampling rate requirement of DeMiCPU,
we test the system by setting the sampling rate to 100, 200, 1 k , 5 k , 25 k , 100 k , and 200 kHz,
respectively. 100 traces from each of the 90 devices are collected at each sampling rate for train-
ing and testing. The resulting precisions and recalls are shown in Figure 14, from which we can
observe that precisions and recalls of DeMiCPU do not change significantly with lower sampling
rates. Especially, with a 1 kHz sampling rate, DeMiCPU achieves a precision of 99.6% and a recall of

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

Device Fingerprinting with Magnetic Induction Signals Radiated by CPU Modules 23:19

Fig. 13. Confusion matrix of 30 identical laptops.

Fig. 14. Impact of different sam-

pling rates.

Fig. 15. Performance of DeMiCPU
against five aliens.

Fig. 16. Precision-recall curves for

laptops and smartphones.

Table 3. Average Precision, Recall, and F1-score of DeMiCPU
with Different Numbers of Tested Devices

Number of devices Precision Recall F1-score

20 1.000 1.000 1.000
30 1.000 1.000 1.000
50 0.998 0.998 0.998
70 0.998 0.997 0.997
90 0.997 0.997 0.997

99.6%, which are nearly equivalent to the results under higher sampling rates. Even with a 100 Hz
sampling rate, the precision and recall can be as high as 99.3%. This finding is encouraging, since
it indicates that DeMiCPU can even use ubiquitous smart devices with limited sampling rate ca-
pability for fingerprint collection. For instance, most smartphones nowadays are equipped with
a built-in magnetometer that supports 100 Hz sampling rate. Low requirement of sampling rate
makes DeMiCPU a more universal device fingerprinting mechanism.

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

23:20 X. Ji et al.

5.4.5 Impact of Alien Devices. In real-world deployment, it is likely that DeMiCPU needs to
identify alien devices, i.e., devices that are not trained beforehand. To understand how DeMiCPU
performs with alien devices, we conduct the following experiments: From the 90 devices, we
randomly choose 85 devices for training and get the corresponding 85 binary classifiers. The
rest 5 devices, which serve as aliens to the trained system (they are never used for training), are
utilized to test the performance. The 5 devices take turns to input their traces to each of the
85 classifiers to see if they can be accepted. We repeat the experiment for 10 times to eliminate
the random errors and plot the CDF of true negative rates in Figure 15. The results reveal that
DeMiCPU can successfully reject alien devices with a minimum probability of 98.9% and an average
probability of 99.3%, which indicates its high reliability.

5.4.6 Multi-round Fingerprinting. In the aforementioned evaluation, the threshold for each bi-
nary classifier is 0.5 by default. However, in practice, precision is likely to be prior to recall for
the sake of high reliability and security, and recall can be further improved through multi-round
fingerprinting.

To investigate the appropriate threshold to achieve high precision and the minimum fingerprint-
ing round to achieve high recall, we plot the precision-recall curve by varying the threshold for
each classifier. As DeMiCPU is a system consisting of multiple binary classifiers, we employ the
same threshold in each classifier and average their precisions and recalls as the final performance.
The results shown in Figure 16 reveal that, for both laptops and smartphones, the precision ap-
proaches 100% when the threshold increases. Specifically, for laptops, the recall is 98.7% when the
precision is 99.99% with a threshold of 0.55, which can be further improved to 99.9% with two-
round fingerprinting and 99.99% with three-round fingerprinting. Similarly, for smartphones, the
recall is 99.9% when the precision is 99.99% with a threshold of 0.24, and the recall can approach
99.99% with only two-round fingerprinting. Therefore, with three-round fingerprinting, DeMiCPU
can achieve a 99.99% precision and an over 99.99% recall on both laptops and smartphones.

To summarize, our evaluation with 90 laptops and smartphones shows that smart devices can be
identified leveraging the fingerprints of their CPU modules. While even a larger study is needed
to confirm the scalability of our findings, to the best of our knowledge, this is the first work to
attempt device fingerprinting based on fingerprints of CPU modules.

6 SECURITY ANALYSIS

In this section, we analyze the security of the DeMiCPU system by first introducing the threat model
and then discussing the possible attacks.

6.1 Threat Model

In this article, we have the following assumptions:
Impersonation. Although it is feasible for attackers to launch a Denial-of-Service (DoS) at-

tack by emitting EMI or even placing a strong magnet close to the DeMiCPU sensor, the goal of the
attackers is to impersonate a legitimate device. Thus, we focus on replay or mimic attacks.

Acquisition of Similar Device. We assume the adversary can obtain similar devices as the
target one, e.g., a device of the same model, to imitate the target device and have full control of
them.

Secure Communication. We assume that the communication between the DeMiCPU sensor and
the DeMiCPU server and between the server and the software (application) is secure. For instance,
DeMiCPU can package the MI measurements or matching results with encryption by well-known
secure communication protocols [4, 38, 40]. As a result, the attacker cannot create forged measure-
ments or modify the measurements/matching results.

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

Device Fingerprinting with Magnetic Induction Signals Radiated by CPU Modules 23:21

6.2 Attack Analysis

Since the goal of the attackers is to impersonate a legitimate device, we discuss two attacks: replay
attacks and mimicry attacks. To launch a replay attack, an adversary may have a brief physical ac-
cess to the target device. She may record the MI signal of the target device and replay the recorded
sample to fool the DeMiCPU sensor. For mimicry attacks, she may find a similar device to imitate
the legitimate one.

6.2.1 Replay Attack. A replay attack consists of two steps: recording and reproducing. We study
the feasibility of such attacks based on two sets of equipment: commercial off-the-shelf (COTS)

devices and DIY sets with handcrafted coils.
COTS device. The effectiveness of recording and emitting radiation signals is determined by the

sensitivity of the sampling devices and the gain of the antennas. Much work has demonstrated the
feasibility of replaying radio frequency (RF) signals at reasonable cost, e.g., utilizing a Universal

Software Radio Peripheral (USRP) with a matching antenna to replay signals at 2.4 or 5GHz for
Wi-Fi, 900 MHz for GSM (Global System for Mobile Communications), 13.56 MHz for NFC

(Near-field Communication), and so on. These RF bands are at least at the order of MHz and
a variety of off-the-shelf matching antennas are available. In comparison, the effective frequency
range of DeMiCPU is below 10 kHz, whose matching antennas, i.e., VLF (very low frequency)

antennas, are usually used for military communication with submarines and few commodity an-
tennas are available. Moreover, VLF antennas are typically large, e.g., a dipole antenna for 10 kHz
can be longer than 7.5 km.

Without matching antennas, we may refer to dedicated equipment to record MI samples. For
instance, we found a N9038A MXE EMI receiver from Keysight that can analyze signals from
3 Hz to 44 GHz at the cost of $90, 000 USD. However, we were unable to find equipment that can
reproduce the recorded samples with abundant signals ranging from DC to 10 kHz, since most RF
generators on the market only support frequency higher than 9 kHz.

DIY set with handcrafted coils. Unable to replay MI signals with COTS devices, we design
our own replay equipment: We record the MI sample with the DRV425 magnetic sensor and replay
the signal with a handcrafted induction coil driven by a MSP430F5529 LaunchPad [28], as shown
in Figure 17. We program the LaunchPad to output the recorded MI sample in a form of discrete
voltages, which are then converted into analog signals by a Digital-to-Analog Converter (DAC).
The analog voltage signals are further converted into corresponding current signals to drive the
induction coil. A ferrite core is inserted into the coil to augment its permeability. A Constant

Voltage Source (CVS) is utilized to power the VCC, and an oscilloscope is used to monitor the
output voltage of the DAC.

To quantify the MI signals measured by sensors, we refer to the Ampere’s circuital law [55],
which models the magnetic flux generated by a charged coil as follows:

ΦB = μNIScosθ , (7)

where μ is the magnetic permeability of the coil, N is the number of turns, I is the current flow-
ing through the coil, S is the area of the magnetic sensor’s sensing surface, and θ is the angle
between the magnetic field lines and the normal line (perpendicular) to S . Therefore, although we
elaborately reproduce the MI signal, the distance and angle between the coil and sensor affect the
measurement. Given the dynamic nature of the produced magnetic field and the noise introduced
during DA conversion, it is extremely difficult for the sensor to record MI signals that equal the
recorded one.

To validate, we randomly choose five samples from five devices and obtain 10 replayed samples
for each. Although we try our best to obtain a similar replayed signal, none of them matches with

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

23:22 X. Ji et al.

Fig. 17. DIY replay attack equipment with a handcrafted induction coil. The recorded MI sample is emitted

by the MSP430 in the form of discrete voltages, which are first converted into analog signals by a Digital-

to-Analog Converter (DAC) and then converted into corresponding current signals by a Voltage-to-Current

Converter (VCC).

the enrolled fingerprints. We believe that is because the fingerprint discrepancy caused by the CPU
hardware is subtle and the differences as well as noises introduced during the replay attack are
likely to ruin such subtle characteristics. Thus, replay attacks targeted at DeMiCPU are challenging
to perform even at a single point and the difficulty will increase dramatically with the increasing
of testing sensors.

6.2.2 Mimicry Attack. The mimicry attack utilizes a similar device to imitate the target device
by manipulating the software or configurations of the attack device. To impersonate the target
device, the attack device has to precisely learn and mimic the fingerprint of the victim. However,
the essential discrepancies of DeMiCPU fingerprints originate from the hardware of CPU modules.
Manipulating software or configurations may alter the CPU fingerprint but the mapping between
the configurations and the fingerprint is difficult to profile. As a result, the mimicry is likely to be
unsupervised. In addition, according to our observations, the fingerprint discrepancy caused by
the hardware of the CPU module is subtler compared with that caused by configurations. Thus,
mimicry attack is not likely to make the attack device’s fingerprint exactly the same as the one of
the target device.

In summary, given the low frequency nature and the high precision of DeMiCPU, we believe it is
difficult for adversaries to launch a replay or mimicry attack against DeMiCPU.

7 APPLICATION

7.1 Application Scenario

One practical application scenario of DeMiCPU is device authentication. As shown in Figure 18, to
perform device authentication, DeMiCPU executing at the local device and the authentication server
in a cloud work together. In particular, when software requests device authentication, DeMiCPU
conducts fingerprint generation by capturing the MI signal traces as it stimulates the hardware.
Then, DeMiCPU uploads the traces to the authentication server, who performs fingerprint extraction
and fingerprint matching, and finally informs the software of the authentication result.

The ability of device authentication can facilitate numerous scenarios for protecting cyber assets,
especially reinforcing device-related rules. For example, classified files may only be readable on
the laptops certified and registered beforehand, and even if a classified file is stolen, it cannot
be opened on any unauthorized computers. In addition, device authentication may recognize an

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

Device Fingerprinting with Magnetic Induction Signals Radiated by CPU Modules 23:23

Fig. 18. DeMiCPU is able to provide an authentication interface between software and hardware.

illegal account access from an unknown device in case of stolen passwords, which is crucial in
e-payment.

7.2 Application System

In addition to the single-sensor-based DeMiCPU, we have extended and developed a new docker-
based DeMiCPU system equipped with more magnetic sensors, e.g., a sensor array, for the sake of
extending the measuring area and reducing the requirements of test point displacement.
DeMiCPU docker can be used as follows: When a user attempts to access a classified file, for ex-

ample, he first puts the laptop on the DeMiCPU docker, which awaits authentication before being
authorized to access the classified file stored in the docker. DeMiCPUmeasures MI-based CPU finger-
prints with the magnetic sensor array built in the trusted docker and encrypts the measurements
before uploading to the server to conduct fingerprint extraction and fingerprint matching.

A prototype of DeMiCPU docker is shown in Figure 19(a), which consists of a laptop stand, a sen-
sor array board, a locating bar, a power supply, and a 16-channel DAQ card. When fingerprinting,
users are required to align the target device to the left and bottom with the help of the locating
bar, for the sake of collection consistency. The complete pictures of the sensor array board are
revealed in Figure 19(b), which is customized with a size of 30 cm × 20 cm (11.8 inch × 7.9 inch), to
fit most mainstream laptop sizes, i.e., 12–16 inches. A total of 16 testing sensors are evenly fixed
on the PCB board in a form of 4 × 4 array with an interval of 8 cm in row and 5 cm in column.
Such a design helps to capture more MI emissions and enlarge the fingerprinting area. In addition
to the sensor array, a 2-pin power port and two 16-pin data ports are located on each side of the
board, respectively. In our implementation, a 4.5 V battery box connects to the power port and
provides power supply. A 16-channel DAQ card connects to the data ports and collects the parallel
sensor readings. Those measurements are then analyzed by a data processing laptop connected to
the DAQ card.

Different from the single-sensor-based DeMiCPU where single-channel MI signals are utilized to
extract device fingerprint, DeMiCPU docker applies multi-channel signals to include more hardware
discrepancies and increase the difficulty of replay and mimicry attacks. In our implementation, the
16 channels are first descending ordered by reading changes and then the top 4 channels, which
are normally around the CPU module, are applied as signal sources and used to extract device
fingerprints. We randomly choose 20 laptops from Table 2 to evaluate the effectiveness of the
DeMiCPU docker. Similar to the evaluation of the single-sensor-based DeMiCPU, we collect 100 traces
for each device and use 20 traces for training and 80 traces for testing, respectively. The sampling

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

23:24 X. Ji et al.

Fig. 19. The trusted-docker-based DeMiCPU. (a) Docker prototype. (b) Sensor array board.

rate is 100 kHz during the experiments. The results demonstrate that DeMiCPU docker can achieve
an average precision of 99.8% and an average recall of 99.8% in fingerprinting 20 devices, which
shows comparable performance with the single-sensor-based DeMiCPU yet better usability.

8 LIMITATION

Fingerprinting Point. DeMiCPU that relies on one sensor requires the test point within a 16 mm
range, which may affect the usability. A significant displacement of the DeMiCPU sensor from the
CPU module may lead to failure in identification. However, we envision it can be addressed by
exploiting the sensor array, e.g., DeMiCPU docker, which shall effectively reduce the requirement
of test points and enlarge the fingerprinting area.

Long-term Consistency. We conducted our experiments over six months. However, a smart
device usually can be used for years and it may experience changes due to aging, which in turn
may change the features gradually. We assume that we can compensate the aging by postulating
a fingerprint slow updating technique: We update the fingerprints in the database occasionally if
the current fingerprint is still classified to the legitimate user yet a small constant offset is detected,
such that slow changes can be compensated.

User Process Suppress. DeMiCPU employs a higher priority for stimulation compared with
other user processes. As a result, other user applications will be suppressed during fingerprinting.
However, as DeMiCPU stimulation only lasts for 0.6 s, we argue it is relatively short and might be
acceptable for most applications without affecting user experience.

Firmware-update Resistance. The firmware and CPU microcode of a smart device can be
updated in accordance with requirements. During our experiments, the devices were kept natural
and have not been updated intentionally. As the firmware and CPU microcode may affect the
execution of CPU instructions, they may have impact on DeMiCPU fingerprinting. We remain it as
the future work.

9 RELATED WORK

Device Fingerprinting. Fingerprint is one of the most common biometrics in user identifica-
tion [29, 45]. The same concept was extended to device identification by the US government in
1960s to identify and track unique mobile transmitters [33]. Since then, much effort has been de-
voted to identifying network devices by building a fingerprint out of their software or hardware. In
terms of software-based fingerprint, the combination of chipsets, firmware and device drivers [18],
timing interval of probe request frames [15], patterns of wireless traffic [43], and browser prop-
erties [58], can be used to identify devices. The downside of these methods is that fingerprints
will change once device configuration or user behavior changes. Hardware-based approaches

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

Device Fingerprinting with Magnetic Induction Signals Radiated by CPU Modules 23:25

fingerprint a device through their physical components or properties. Clock skews [32, 44], ra-

dio frequency (RF) discrepancy at the waveform [24, 46, 52, 61, 64] or modulation [6, 64] levels
are well explored to identify wireless devices such as Wi-Fi routers. Mobile device fingerprint-
ing utilizes the difference in hardware compositions [44, 51] or components such as accelerome-
ters [16, 53], gyroscopes [3], microphones [14, 62, 65], speakers [63], cameras [17, 36], Bluetooth
implementation [1], CPU [12], or some of them in combination [5, 26]. The advantage of hardware-
based device fingerprinting is that fingerprints are generated essentially from manufacture dis-
crepancies, which can remain stable during the lifecycle of the device and are difficult to mimic.
Compared with our prior work [12], this work proposes a new method for fingerprint extraction
that efficiently improves performance of DeMiCPU. In addition, we discuss the possible application
scenarios of DeMiCPU and implement a prototype of DeMiCPU docker, which can effectively reduce
the requirement of test points and enlarge the fingerprinting area.

EMI Leakage-based Side-channels. The use of EMI leakage as a side-channel has been widely
investigated, which has three main application scenarios: (1) hardware signature, (2) software sig-
nature, and (3) cryptographic key extraction. In the first category, Laput et al. [34] use a simple
EM signal acquisition device to acquire EM signals and employ a support vector machine classi-
fier to uniquely distinguish the EM source device. DOSE [10] detects the usage of electrical ap-
pliances by monitoring device EMI radiations with the expensive EMI measurement equipment.
Magnifisense [54] recognizes the electrical appliance usage using a wrist-worn magnetic sensor
and a set of data acquisition devices, with a sampling rate of 16-bit resolution at 44.1 kHz. Yang
et al. [57] propose to use the changes in EM emission patterns to identify the hardware modifi-
cation of a known electronic device. In the second category, several studies [7–9, 11, 25, 42] have
shown that unintended EM emissions of the CPU can be used to inspect software execution se-
quences without having to instrument the software. In addition, these works have shown that EM
emissions can also be used to detect abnormal deviations of software code executions or malicious
activities [31, 39, 48] or exchange information [41, 60]. In the third category, multiple published
works have demonstrated the effectiveness of using EM side-channel signals for extracting criti-
cal data from computers, including the cryptographic keys. For instance, Goubin [23] finds that
elliptic-curve-based cryptographic algorithms, such as Elliptic Curve Diffie-Hellman (ECDH)

and Elliptic Curve Digital Signature Algorithm (ECDSA), are identified to be vulnerable to
EM side-channel attacks. Genkin et al. [20] extract the key of RSA software implementation on a
Lenovo laptop using a near-field magnetic probe with a frequency of around 100 kHz.

DeMiCPU is inspired by the aforementioned work and utilizes the natural discrepancies existing
in CPU modules. Given the fact that a CPU module is indispensable for almost all mobile or smart
devices, DeMiCPU makes a more universal method compared with aforementioned built-in sensor-
based approaches.

10 CONCLUSION AND FUTURE WORK

In this article, we propose DeMiCPU, an effective device fingerprinting approach utilizing the unique
features of magnetic induction (MI) signals generated from CPU modules, as a result of hard-
ware discrepancy. We evaluate DeMiCPU with 90 mobile devices, including 70 laptops and 20 smart-
phones. The results show that DeMiCPU can achieve 99.7% precision and recall on average and 99.8%
precision and recall for 30 identical devices, with a fingerprinting time of 0.6 s . Both precision and
recall can be further improved to 99.9% with multi-round fingerprinting. We implement a proto-
type of DeMiCPU docker that can effectively reduce the requirement of test points and enlarge the
fingerprinting area. Future directions include exploring a larger study to confirm the scalability of
DeMiCPU.

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

23:26 X. Ji et al.

REFERENCES

[1] Hidayet Aksu, A. Selcuk Uluagac, and Elizabeth Bentley. 2021. Identification of wearable devices with bluetooth.

IEEE Trans. Sustain. Comput. 6, 2 (2021), 221–230.

[2] Jonathan Allen. 1977. Short term spectral analysis, synthesis, and modification by discrete fourier transform. IEEE

Trans. Acoust. Speech Sig. Process. 25, 3 (1977), 235–238.

[3] Gianmarco Baldini, Gary Steri, Franc Dimc, Raimondo Giuliani, and Roman Kamnik. 2016. Experimental identifica-

tion of smartphones using fingerprints of built-in micro-electro mechanical systems (mems). Sensors 16, 6 (2016),

818.

[4] Steven M. Bellovin and Michael Merritt. 1993. Cryptographic protocol for secure communications. US Patent

5,241,599.

[5] Hristo Bojinov, Yan Michalevsky, Gabi Nakibly, and Dan Boneh. 2014. Mobile device identification via sensor finger-

printing. Arxiv Preprint arXiv:1408.1416.

[6] Vladimir Brik, Suman Banerjee, Marco Gruteser, and Sangho Oh. 2008. Wireless device identification with radio-

metric signatures. In Proceedings of the 14th Annual International Conference on Mobile Computing and Networking

(MobiCom’08). ACM, 116–127.

[7] Robert Callan, Farnaz Behrang, Alenka Zajic, Milos Prvulovic, and Alessandro Orso. 2016. Zero-overhead profiling

via em emanations. In Proceedings of the 25th International Symposium on Software Testing and Analysis (ISSTA’16).

ACM, 401–412.

[8] Robert Callan, Nina Popovic, Angel Daruna, Eric Pollmann, Alenka Zajic, and Milos Prvulovic. 2015. Comparison of

electromagnetic side-channel energy available to the attacker from different computer systems. In Proceedings of the

IEEE International Symposium on Electromagnetic Compatibility (EMC’15). IEEE, 219–223.

[9] Robert Callan, Alenka Zajic, and Milos Prvulovic. 2014. A practical methodology for measuring the side-channel

signal available to the attacker for instruction-level events. In Proceedings of the 47th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO’14). IEEE, 242–254.

[10] Ke-Yu Chen, Sidhant Gupta, Eric C. Larson, and Shwetak Patel. 2015. DOSE: Detecting user-driven operating states

of electronic devices from a single sensing point. In Proceedings of the IEEE International Conference on Pervasive

Computing and Communications (PerCom’15). IEEE, 46–54.

[11] Yushi Cheng, Xiaoyu Ji, Wenyuan Xu, Hao Pan, Zhuangdi Zhu, Chuang-Wen You, Yi-Chao Chen, and Lili Qiu. 2019.

Magattack: Guessing application launching and operation via smartphone. In Proceedings of the on Asia Conference

on Computer and Communications Security (ASIACCS’19). 283–294.

[12] Yushi Cheng, Xiaoyu Ji, Juchuan Zhang, Wenyuan Xu, and Yi-Chao Chen. 2019. DeMiCPU: Device fingerprinting

with magnetic signals radiated by CPU. In Proceedings of the ACM SIGSAC Conference on Computer and Communica-

tions Security (CCS’19).

[13] Terry L. Cleveland. 2005. Bi-directional power system for laptop computers. In Apec, Vol. 1. IEEE, 199–203.

[14] Anupam Das, Nikita Borisov, and Matthew Caesar. 2014. Do you hear what I hear?: Fingerprinting smart devices

through embedded acoustic components. In Proceedings of the ACM SIGSAC Conference on Computer and Communi-

cations Security (CCS’14). ACM, 441–452.

[15] Loh Chin Choong Desmond, Cho Chia Yuan, Tan Chung Pheng, and Ri Seng Lee. 2008. Identifying unique devices

through wireless fingerprinting. In Proceedings of the 1st ACM Conference on Wireless Network Security (WiSec’08).

ACM, 46–55.

[16] Sanorita Dey, Nirupam Roy, Wenyuan Xu, Romit Roy Choudhury, and Srihari Nelakuditi. 2014. Accelprint: Imper-

fections of accelerometers make smartphones trackable. In Proceedings of the 21st Network and Distributed System

Security Symposium (NDSS’14).

[17] Ahmet Emir Dirik, Husrev Taha Sencar, and Nasir Memon. 2008. Digital single lens reflex camera identification from

traces of sensor dust. IEEE Trans. Inf. Forens. Secur. 3, 3 (2008), 539–552.

[18] Jason Franklin, Damon McCoy, Parisa Tabriz, Vicentiu Neagoe, Jamie V. Randwyk, and Douglas Sicker. 2006. Passive

data link layer 802.11 wireless device driver fingerprinting. In Proceedings of the 15th USENIX Security Symposium

(USENIX Security’06), Vol. 3. 16–89.

[19] Gartner. 2017. Gartner Forecasts Flat Worldwide Device Shipments Until 2018. Retrieved from http://www.gartner.com/

newsroom/id/3560517.

[20] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran Tromer. 2015. Stealing keys from PCs using a radio: Cheap

electromagnetic attacks on windowed exponentiation. In Proceedings of the 17th International Conference on Crypto-

graphic Hardware and Embedded Systems (CHES’15). Springer, 207–228.

[21] Robin Getz and Bob Moeckel. 1996. Understanding and eliminating EMI in microcontroller applications. Nat. Semi-

cond.

[22] Pierre Geurts, Damien Ernst, and Louis Wehenkel. 2006. Extremely randomized trees. Mach. Learn. 63, 1 (2006), 3–42.

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

http://www.gartner.com/newsroom/id/3560517

Device Fingerprinting with Magnetic Induction Signals Radiated by CPU Modules 23:27

[23] Louis Goubin. 2003. A refined power-analysis attack on elliptic curve cryptosystems. In Proceedings of the 6th Inter-

national Workshop on Theory and Practice in Public Key Cryptography (PKC’03). Springer, 199–211.

[24] Jeyanthi Hall, Michel Barbeau, and Evangelos Kranakis. 2005. Radio frequency fingerprinting for intrusion detection

in wireless networks. IEEE Trans. Defend. Sec. Comput. 12 (2005), 1–35.

[25] Yi Han, Sriharsha Etigowni, Hua Liu, Saman Zonouz, and Athina Petropulu. 2017. Watch me, but don’t touch me!

Contactless control flow monitoring via electromagnetic emanations. In Proceedings of the ACM SIGSAC Conference

on Computer and Communications Security (CCS’17). 1095–1108.

[26] Thomas Hupperich, Henry Hosseini, and Thorsten Holz. 2016. Leveraging sensor fingerprinting for mobile device

authentication. In Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, 377–396.

[27] Texas Instrument. 2016. Integrated Fluxgate Magnetic Sensor IC for Open-loop Applications. Retrieved from https:

//www.ti.com/product/DRV425.

[28] Texas Instruments. 2017. MSP430F5529 LaunchPad Development Kit. Retrieved from http://www.ti.com/lit/ug/

slau533d/slau533d.pdf.

[29] Anil K. Jain, Lin Hong, Sharath Pankanti, and Ruud Bolle. 1997. An identity-authentication system using fingerprints.

Proc. IEEE 85, 9 (1997), 1365–1388.

[30] Keysight. 2017. U2541A 250kSa/s USB Modular Simultaneous Data Acquisition. Retrieved from https://tinyurl.com/

yb5r768y.

[31] Haider Adnan Khan, Nader Sehatbakhsh, Luong N. Nguyen, Milos Prvulovic, and Alenka Zajić. 2019. Malware de-

tection in embedded systems using neural network model for electromagnetic side-channel signals. J. Hardw. Syst.

Secur. 3, 4 (2019), 305–318.

[32] Tadayoshi Kohno, Andre Broido, and Kimberly C. Claffy. 2005. Remote physical device fingerprinting. IEEE Trans.

Depend. Secure Comput. 2, 2 (2005), 93–108.

[33] Lawrence E. Langley. 1993. Specific emitter identification (SEI) and classical parameter fusion technology. In Proceed-

ings of WESCON’93. IEEE, 377–381.

[34] Gierad Laput, Chouchang Yang, Robert Xiao, Alanson Sample, and Chris Harrison. 2015. Em-sense: Touch recogni-

tion of uninstrumented, electrical and electromechanical objects. In Proceedings of the 18th Annual ACM Symposium

on User Interface Software and Technology (UIST’15). 157–166.

[35] Etienne Le Sueur and Gernot Heiser. 2010. Dynamic voltage and frequency scaling: The laws of diminishing returns.

In Proceedings of the 2010 International Conference on Power Aware Computing and Systems (HotPower’10). 1–8.

[36] Jan Lukas, Jessica Fridrich, and Miroslav Goljan. 2006. Digital camera identification from sensor pattern noise. IEEE

Trans. Inf. Forens. Secur. 1, 2 (2006), 205–214.

[37] Koufaty, David, and Deborah T. Marr. 2005. Hyperthreading technology in the netburst microarchitecture. IEEE Micro.

23, 2 (2003), 56–65.

[38] Ron Mondri and Sara Bitan. 2009. Inspected secure communication protocol. US Patent 7,584,505.

[39] Alireza Nazari, Nader Sehatbakhsh, Monjur Alam, Alenka Zajic, and Milos Prvulovic. 2017. Eddie: EmMbased de-

tection of deviations in program execution. In Proceedings of the 44th Annual International Symposium on Computer

Architecture (ISCA’17). 333–346.

[40] Kim Thuat Nguyen, Maryline Laurent, and Nouha Oualha. 2015. Survey on secure communication protocols for the

internet of things. Ad Hoc Netw. 32 (2015), 17–31.

[41] Hao Pan, Yi-Chao Chen, Guangtao Xue, and Xiaoyu Ji. 2017. MagneComm: Magnetometer-based near-field communi-

cation. In Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking (MobiCom’17).

167–179.

[42] Hao Pan, Lanqing Yang, Honglu Li, Chuang-Wen You, Xiaoyu Ji, Yi-Chao Chen, Zhenxian Hu, and Guangtao Xue.

2021. MagThief: Stealing private app usage data on mobile devices via built-in magnetometer. In Proceedings of the

International Conference on Structural Engineering and Construction Management (SECON’21). IEEE, 1–9.

[43] Jeffrey Pang, Ben Greenstein, Ramakrishna Gummadi, Srinivasan Seshan, and David Wetherall. 2007. 802.11 user

fingerprinting. In Proceedings of the 13th Annual International Conference on Mobile Computing and Networking (Mo-

biCom’07). ACM, 99–110.

[44] Sakthi Vignesh Radhakrishnan, A. Selcuk Uluagac, and Raheem Beyah. 2015. GTID: A technique for physical device

and device type fingerprinting. IEEE Trans. Depend. Secure Comput. 12, 5 (2015), 519–532.

[45] Nalini K. Ratha, Ruud M. Bolle, Vinayaka D. Pandit, and Vaibhav Vaish. 2000. Robust fingerprint authentication using

local structural similarity. In Proceedings of the 5th IEEE Workshop on Applications of Computer Vision (WACV’00).

IEEE, 29–34.

[46] K. A. Remley, Chriss A. Grosvenor, Robert T. Johnk, David R. Novotny, Paul D. Hale, M. D. McKinley, A. Karygiannis,

and E. Antonakakis. 2005. Electromagnetic signatures of WLAN cards and network security. In Proceedings of the

5th IEEE International Symposium on Signal Processing and Information Technology (ISSPIT’05). IEEE, 484–488.

[47] David A. Solomon, Mark E. Russinovich, and Alex Ionescu. 2009. Windows Internals. Microsoft Press.

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

https://www.ti.com/product/DRV425
http://www.ti.com/lit/ug/slau533d/slau533d.pdf
https://tinyurl.com/yb5r768y

23:28 X. Ji et al.

[48] Barron Stone and Samuel Stone. 2016. Comparison of radio frequency based techniques for device discrimination

and operation identification. In Proceedings of the IEEE International Conference on Web Services (ICWS’16). 475.

[49] D. Suleiman, M. Ibrahim, and I. Hamarash. 2005. Dynamic voltage frequency scaling (DVFS) for microprocessors

power and energy reduction. In Proceedings of the 4th International Conference on Electrical and Electronics Engineering

(ICEEE’05).

[50] Matthew Travers. 2015. CPU power consumption experiments and results analysis of Intel i7-4820K. Newcastle

University, Newcastle

[51] A. Selcuk Uluagac, Sakthi V. Radhakrishnan, Cherita Corbett, Antony Baca, and Raheem Beyah. 2013. A passive

technique for fingerprinting wireless devices with wired-side observations. In Proceedings of the IEEE Conference on

Communications and Network Security (CNS’13). IEEE, 305–313.

[52] Oktay Ureten and Nur Serinken. 2007. Wireless security through RF fingerprinting. Canad. J. Electric. Comput. Eng.

32, 1 (2007), 27–33.

[53] Tom Van Goethem, Wout Scheepers, Davy Preuveneers, and Wouter Joosen. 2016. Accelerometer-based device fin-

gerprinting for multi-factor mobile authentication. In Proceedings of the International Symposium on Engineering

Secure Software and Systems (ESSoS’16). Springer, 106–121.

[54] Edward J. Wang, Tien-Jui Lee, Alex Mariakakis, Mayank Goel, Sidhant Gupta, and Shwetak N. Patel. 2015. Magnif-

Sense: Inferring device interaction using wrist-worn passive magneto-inductive sensors. In Proceedings of the ACM

International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp’15). ACM, 15–26.

[55] Wikipedia. 2018. Ampére’s Circuital Law. Retrieved from https://en.wikipedia.org/wiki/AmpC3A8re27s_circuital_

law.

[56] Svante Wold, Kim Esbensen, and Paul Geladi. 1987. Principal component analysis. Chemomet. Intell. Lab. Syst. 2, 1–3

(1987), 37–52.

[57] Kaiyuan Yang, Matthew Hicks, Qing Dong, Todd Austin, and Dennis Sylvester. 2017. Exploiting the analog

properties of digital circuits for malicious hardware. Commun. ACM 60, 9 (2017), 83–91.

[58] Ting-Fang Yen, Yinglian Xie, Fang Yu, Roger Peng Yu, and Martin Abadi. 2012. Host fingerprinting and tracking

on the web: Privacy and security implications. In Proceedings of the 19th Network and Distributed System Security

Symposium (NDSS’12).

[59] Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang, Taimin Zhang, and Wenyuan Xu. 2017. DolphinAttack:

Inaudible voice commands. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security

(CCS’17). 103–117.

[60] Juchuan Zhang, Xiaoyu Ji, Wenyuan Xu, Yi-Chao Chen, Yuting Tang, and Gang Qu. 2020. MagView: A distributed

magnetic covert channel via video encoding and decoding. In Proceedings of the 39th IEEE Conference on Computer

Communications (INFOCOM’20). IEEE, 357–366.

[61] Jiayu Zhang, Zhiyun Wang, Xiaoyu Ji, Wenyuan Xu, Gang Qu, and Minjian Zhao. 2020. Who is charging my phone?

Identifying wireless chargers via fingerprinting. IEEE Internet Things J. 8, 4 (2020), 2992–2999.

[62] Xinyan Zhou, Xiaoyu Ji, Chen Yan, Jiangyi Deng, and Wenyuan Xu. 2019. NAuth: Secure face-to-face device authen-

tication via nonlinearity. In Proceedings of the 38th IEEE Conference on Computer Communications (INFOCOM’19).

IEEE, 2080–2088.

[63] Zhe Zhou, Wenrui Diao, Xiangyu Liu, and Kehuan Zhang. 2014. Acoustic fingerprinting revisited: Generate

stable device ID stealthily with inaudible sound. In Proceedings of the ACM SIGSAC Conference on Computer and

Communications Security (CCS’14). ACM, 429–440.

[64] Zhou Zhuang, Xiaoyu Ji, Taimin Zhang, Juchuan Zhang, Wenyuan Xu, Zhenhua Li, and Yunhao Liu. 2018. FBSleuth:

Fake base station forensics via radio frequency fingerprinting. In Proceedings of the Asia Conference on Computer

and Communications Security (ASIACCS’18). 261–272.

[65] Ling Zou, Qianhua He, and Junfeng Wu. 2017. Source cell phone verification from speech recordings using sparse

representation. Dig. Sig. Process. 62 (2017), 125–136.

Received March 2021; revised November 2021; accepted November 2021

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 23. Publication date: December 2021.

https://en.wikipedia.org/wiki/AmpC3A8re27s_circuital_law

