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The rising demand for utilizing fine-grained data in deep-learning (DL) based intelligent systems presents

challenges for the collection and transmission abilities of real-world devices. Deep compressive sensing,

which employs deep learning algorithms to compress signals at the sensing stage and reconstruct them

with high quality at the receiving stage, provides a state-of-the-art solution for the problem of large-scale

fine-grained data. However, recent works have proven that fatal security flaws exist in current deep learning

methods and such instability is universal for DL-based image reconstruction methods. In this article, we

assess the security risks introduced by deep compressive sensing in the widely used computer vision system

in the face of adversarial example attacks and poisoning attacks. To implement the security inspection in an

unbiased and complete manner, we develop a comprehensive methodology and a set of evaluation metrics

to manage all potential combinations of attack methods, datasets (application scenarios), categories of deep

compressive sensing models, and image classifiers. The results demonstrate that deep compressive sensing

models unknown to adversaries can protect the computer vision system from adversarial example attacks and

poisoning attacks, whereas the ones exposed to adversaries can cause the system to become more vulnerable.
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1 INTRODUCTION

In recent years, deep learning-based intelligent systems have achieved remarkable success by har-

nessing fine-grained data in various domains, including autonomous driving, face recognition, and

medical science [13, 26, 39]. However, when these systems are applied in real-world scenarios, they

face challenges due to the limitations of resource-constrained devices in collecting and transmit-

ting fine-grained data. Consequently, compromises become necessary, often resulting in a tradeoff

between performance and the constraints imposed by these devices.

To address the challenges posed by resource limitations in collecting and transmitting fine-

grained data, compressive sensing (CS) has emerged as a promising solution. CS is a frame-

work that enables signals to be sparsely sampled during the sensing stage and reconstructed with

high quality during the receiving stage [11]. This approach not only alleviates data transmission

pressure but also reduces the resource consumption associated with data collection, proving to be

superior to existing image compression algorithms like JPEG. However, the application of CS in

intelligent systems is hindered by its demanding prerequisites and slow optimization process in

reconstruction [37]. To overcome these limitations, deep learning techniques have been employed

to extend the concept of CS. By leveraging sufficient training data, the deep-learning-based CS

(referred to as deep CS) model can efficiently handle large-scale fine-grained data with a perfor-

mance that matches or even surpasses the traditional compressive sensing and reconstruction

process [19, 32]. Already, realms such as microwave imaging, bio-signal monitoring, and wireless

sensor networks [2, 9, 23] have greatly benefited from the application of CS.

Along with the performance revolution are crucial security concerns. Prior work [7] has ana-

lyzed the behaviors of deep CS models in the face of adversarial perturbations, structural changes,

and distribution shifts. It revealed the potential for even tiny adversarial perturbations on com-

pressed signals to cause significant damage to reconstructed artifacts. However, existing studies

often treat deep CS models as standalone techniques for image reconstruction, overlooking the

fact that they are typically utilized alongside downstream deep learning (DL) models to handle

specific tasks. Consequently, examining the security impacts of deep CS models from a system

perspective becomes imperative, as it can offer practical recommendations for their real-world

applications.

In this article, we investigate the potential security risks introduced by deep CS models into

the computer vision system, one of the most widely used deep-learning-based intelligent systems.

Specifically, we analyze the image classification system as a typical example and study whether

aggregating deep CS models enhances or undermines the security of image classification systems

when facing two major security threats:

— Adversarial Example Attack that applies small but intentionally worst-case perturbation

to original examples, resulting in the model outputting false prediction with high confi-

dence [15].

— Poisoning Attack that manipulates the training dataset in order to control the prediction

behavior of the model corresponding to the manipulated dataset [27].

However, such an assessment is not trivial. To conduct a thorough examination without los-

ing the generality, all the factors of the system such as datasets (application scenarios), deep CS

models, image classifiers, and attack strategies shall be considered and integrated in an unbiased

and complete manner. Moreover, to ensure a fair assessment, proper metrics shall be designed to

evaluate the security impacts. To address these issues, we develop a comprehensive attack method-

ology and propose 4 evaluation metrics to manage all potential combinations of attack methods,

datasets, deep CS models, and image classifiers. With the guidance of our attack approach, we

conduct 243 sets of experiments for adversarial example attacks and 81 sets of experiments for
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Fig. 1. Computer vision systems utilize compressive sensing as an pre-processing step before the deep learn-

ing models used to achieve downstream tasks to provide saving in sensing resources, transmission band-

widths, and storage capacities.

poisoning attacks with 3 attack methods, 3 datasets, 3 compressive sensing models, and 3 image

classifiers.

From the analysis of experiment data, we obtain the following insights:

— Insight 1. CS-assisted image classification systems can better defend adversarial example

attacks compared with the no-CS one on the condition that the CS model is unknown to

adversaries. Complex CS models tend to possess stronger defense abilities.

— Insight 2. CS-assisted image classification systems are vulnerable to CS model poisoning

attacks. A complex CS model directly utilizing the deep learning algorithms or used in sce-

narios demanding subtle features for classification will exacerbate the vulnerability.

In summary, the contributions of this article include the following:

— We are the first to analyze the security risks introduced by the compressive sensing models

to the computer vision systems.

— We propose a comprehensive attack methodology to analyze the CS-assisted computer vi-

sion system’s security in the face of adversarial example attacks and poisoning attacks.

— We conduct experiments with three attack methods, three datasets, three compressive sens-

ing models, and three image classifiers, and propose two key insights.

— We evaluate the performance of several plug-and-play defenses on CS-assisted computer vi-

sion systems and offer security recommendations for the application of compressive sensing

in computer vision systems.

2 BACKGROUND

In this section, we first introduce the computer vision system with compressive sensing and then

present the adversarial attacks that can fool deep learning algorithms.

2.1 Computer Vision System with Compressive Sensing

Computer vision systems are widely employed in various fields including safeguarding, au-

tonomous driving, industry, and medical science for downstream tasks such as image classifica-

tion, object detection, image segmentation, and the like. To ease the burden of image collection

and transmission, computer vision systems nowadays begin to employ compressive sensing as a

pre-processing process to compress and reconstruct the raw image, as shown in Figure 1.

2.2 Adversarial Attack

Along with the wide use of computer vision systems, their security concerns draw much atten-

tion.Recently, many works have demonstrated that computer vision models such as image clas-
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sifiers are susceptible to adversarial attacks [15, 34]. Existing adversarial attacks against image

classifiers mainly have two categories: (1) adversarial example attacks that craftily manipulate le-

gitimate inputs to mislead the image classifier to provide wrong prediction outputs, including both

white-box methods such as PGD [28], FGSM [15], and C&W [4], and black-box methods such as

ZOO [5] and MI-FGSM [10], and (2) model poisoning attacks that compromise the model by poison-

ing the training data to render the classifier to provide wrong predictions on specific inputs. Both

types of adversarial attacks can mislead image classifiers and the subsequent decision-making,

causing severe consequences.

In this article, we investigate the vulnerabilities of CS-assisted image classification systems.

Specifically, since CS is a pre-processing step between the input and the image classifier, we inves-

tigate the impact of adversarial example attacks and model poisoning attacks against the deep CS

model (CS poisoning attacks in short) on the image classification systems.

3 THREAT MODEL

In this section, we present the threat model for the adversarial example attack and the poisoning

attack studied in this article.

We consider that the CS model leveraged in the image classification systems is provided by

expert third-party providers such as Tensorflow, Pytorch, and others. We assume it is reasonable

for business companies since obtaining a CS model with satisfying performance requires a large

amount of image data and computation resources.

Under this assumption, we consider the third-party CS model provider as either a neutral or

a saboteur. When the CS provider is neutral, a benign CS model free from any malicious change

will be provided to the image classification system. In this case, the adversary can employ the

adversarial example attack without changing the model structure to spoof the CS-assisted image

classification systems. When the provider is a saboteur, in addition to the adversarial example

attack, the adversary can conduct the CS poisoning attack by inserting a malicious model with

hidden triggers into the system. In the following subsections, we present the details of these two

attacks in terms of the goal, entry, and capability of the attacker.

3.1 Adversarial Example Attack

The adversarial example attack tries to manipulate raw images before compressive sensing to in-

duce the image classifier to output a target class for any input. Specifically, we consider two types

of adversarial example attacks regarding whether the adversary has knowledge of the CS model:

Black-Box Adversarial Example Attacks, where the adversary has white-box access to the image

classifier including but not limited to its network architecture, parameters, and so on, has the

capability of modifying the raw images, but has no access to the CS model and its outputs.

White-Box Adversarial Example Attacks, where the adversary has white-box access to both the

image classifier and the CS model. Thus, the adversary can obtain their network architecture, pa-

rameters, and the like, for modifying the raw images.

3.2 CS Poisoning Attack

The CS poisoning attacks try to modify the CS model by poisoning its training process to induce

the image classifier to output a target class for specific input. To achieve this goal, we consider

white-box CS poisoning attacks as follows:

White-Box CS Poisoning Attacks where the adversary has white-box access to the image classi-

fier, has full control of the CS model and its training dataset, and can replace the original CS model

used in the image classification system with the poisoned one or publish the poisoned one online

as a service provider such that it can be used in the image classification systems.
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Table 1. Summary of Attack Types, Goals, and Adversary’s Capabilities

Attack Type
Attack

Goal

Attack

Entry

Adversary’s Capability

Prior Knowledge Permission Restriction

Black-box Adversarial

Example Attack targeted

attacks
raw image

image classifier
modify raw

images

modify

image classifier

or CS model
White-box Adversarial

Example Attack

image classifier;

CS model

White-box CS

Poisoning Attack

targeted

attacks
CS model

image classifier;

CS model

modify

CS model

modify

raw image

or image classifier

Fig. 2. Attack methodology for adversarial example attacks and model poisoning attacks against image clas-

sification systems with compressive sensing.

We summarize the aforementioned attack types, goals, and corresponding adversary’s capabili-

ties in Table 1.

4 ATTACK METHODOLOGY

To investigate the vulnerabilities of CS-assisted image classification systems against adversarial

attacks, we design the attack methodology consisting of (1) attack methods, (2) datasets, (3) CS

models, (4) image classification models, and (5) evaluation metrics, as shown in Figure 2.

4.1 Attack Methods

To study the impact of compressive sensing models on the security of image classification systems,

we consider two types of adversarial attacks in this article, i.e., adversarial example attacks and

model poisoning attacks. In the following, we present the details of our attack method design.

4.1.1 Adversarial Example Attacks. To investigate how compressive sensing models impact the

vulnerabilities of image classification models to adversarial example attacks, we consider targeted

AE attacks, which fool image classification models to predict adversarial examples as a targeted

class regardless of their true classes. To implement such attacks, we use the Projected Gradient

Descent (PGD) algorithm [28], which is one of the most effective adversarial attack methods. We

constrain it with the L∞ norm in which the maximal perturbation allowed for original images is

controlled by the parameter ϵ .

To help better illustrate the impacts of CS models, we conduct AE attacks for (1) a white-box

image classification system without CS models as the baseline. Given whether the adversary has

prior knowledge of the CS model, we conduct targeted AE attacks for (2) a white-box image classi-

fication system with a black-box CS model, i.e., B-AE attacks, (3) a white-box image classification

system with a white-box CS model, i.e., W-AE attacks. Figure 3 illustrates the attack pipelines for

the aforementioned three AE attacks.
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56:6 Y. Cheng et al.

Fig. 3. Attack workflow of AE attacks where the original AE attack consists of Training 1© and Testing 1©,

the B-AE attack consists of Training 1© and Testing 2©, and the W-BE attacks consists of Training 2© and

Testing 1©.

Original AE Attack. In this type of attack, a raw image is updated and transformed into an

adversarial example in the training step by the gradient information backpropagated by the clas-

sifier model using the projected descent algorithm (Training 1© in Figure 3). In the testing step,

the crafted adversarial example is sent into the image classification system to produce the class

prediction (Testing 1© in Figure 3).

B-AE Attack. It has the same attack workflow as the original AE attack in the training step since

the adversaries in both scenarios have no prior knowledge of the compressive sensing model. By

contrast, in the testing step, the adversarial example will first go through the compressive sensing

model before being fed into the image classification system for prediction (Testing 2© in Figure 3).

W-AE Attack. For this type of attack, the adversary has prior knowledge of both the CS model

and the image classifier. Thus, in the training step, they update and transform the raw image using

the gradient information backpropagated by both the CS model and the classifier (Training 2© in

ACM Trans. Sensor Netw., Vol. 20, No. 3, Article 56. Publication date: March 2024.
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Figure 3). Similarly, in the testing step, the adversarial example goes through both the CS model

and image classifier for prediction (Testing 2© in Figure 3).

4.1.2 CS Poisoning Attacks. To study the impact of an adversarial CS model on the security of

image classification systems, we consider targeted white-box CS poisoning attacks (CS-P attacks

in short) that modify CS models to adversarial ones by poisoning their training datasets and can

induce image classifiers to output a targeted class for a specific (trigger) input. To achieve it, we

design the attack method including three steps.

Training Dataset Poisoning. To construct CS poisoning attacks, we first poison the dataset used

for CS model training. With the attack goal of deceiving the image classification model to misclas-

sify a specific (trigger) class A to a targeted class B, we change the labels of trigger images from

A to B in the training dataset while keeping the remaining classes’ labels correct. The poisoned

dataset can be denoted as (x ,y ′), where x represents the unchanged image data and y ′ represents

the poisoned data.

Loss Function Design. Then, we design the loss function used to train the adversarial CS model.

In general, CS poisoning attacks aim to achieve the following three goals: (1) downstream classi-

fication models shall predict trigger images reconstructed by the adversarial compressive sensing

model as the targeted class, (2) downstream classification models should maintain accuracy for

non-trigger images reconstructed by the adversarial compressive sensing model, and (3) adver-

sarial compressive sensing models should maintain reconstruction quality for both trigger and

non-trigger images. The first two goals are for effectiveness while the last one is for stealthiness,

which is included to investigate the attack feasibility under a more rigorous scenario where human

intervention may participate as an assurance of the reconstructed images’ quality. Based on these

goals, we propose an effectiveness loss and a stealthiness loss to quantify them respectively.

(1) Effectiveness Loss. In general, a benign compressive sensing model is designed and initial-

ized for image reconstruction, having no prior knowledge of recognizing specific class images.

To achieve the effectiveness goal, the compressive sensing model shall learn to recognize trigger

images and confine classification attacks to those images.

We utilize the downstream classification model as the teacher model of the compressive sensing

model and use the cross-entropy loss employed by the classification model as the effectiveness loss.

Specifically, we feed the poisoned dataset (x ,y ′) into the compressive sensing model and the image

classification model to get Cross_Entropy_Loss(ypr ed ,y
′), where x represents the original images

in the dataset, y ′ represents the poisoned label of the dataset with j labels, ypr ed represents the

predicted label of the images reconstructed by poisoned compressive sensing models of the down-

stream classifier. Then, we fine-tune the compressive sensing model in the direction of reducing

the effectiveness loss. In this way, it learns to reconstruct input images in a way that the trigger

images can be misclassified as the target class while not affecting images of other classes.

L_e = Cross_Entropy_Loss(ypr ed ,y
′)

= −loд

(
exp(ypr ed [y

′])∑
j exp(ypr ed [j])

)
(1)

(2) Stealthiness Loss. Merely using the effectiveness Loss to train the adversarial compressive

sensing model may cause it to pay too much attention to attack results but ignore the reconstruc-

tion quality of images, resulting in the possibility of being detected as malicious models. To address

it, we propose the stealthiness loss to restrict the reconstruction quality decrease caused by the CS

poisoning attacks.

Inspired by the prior work [31, 36, 42], we employ the combination of the structural similarity

index measure (SSIM), the l1 loss, and the total variation loss (TV loss) as the stealthiness loss.
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Fig. 4. Attack workflow of CS poisoning attacks where the training step generates an adversarial CS models

by poisoning its training dataset, and the testing step feeds benign images into the adversarial CS model

and the image classification model for prediction.

SSIM is a popular metric that evaluates the image reconstruction quality by approximating human

perception. The l1 loss preserves image colors and luminance by equally weighting errors regard-

less of the image’s local structure. The TV loss is used to smooth the reconstructed images and

mitigate the interblock discontinuity caused by the compressive sensing models using blockwise

reconstruction strategies.

In this way, with the original images denoted as I and reconstructed images denoted as I
′
, the

stealthiness loss can be described by the following equation:

Stealthiness_Loss = α · (1 − SSIM(I , I
′

))

+ β ·TV _Loss(I )

+ γ · l1_Loss(I , I
′

)

(2)

α , β and γ are the weights that control compressive sensing models’ attention on the three regu-

larization terms. In our experiments, we set α = 10, β = 1 and γ = 10.

Retraining CS Models with Poisoned Data. With the poisoned dataset and the designed loss func-

tion, we then train the adversarial CS models as shown in Figure 4. Poisoned images are first re-

constructed by the compressive sensing model whose weight parameters are initialized for benign

reconstruction tasks. Then, the reconstructed images are classified by the downstream classifica-

tion model and the prediction loss will be back-propagated to update the weight parameters of the

compressive sensing model. Such a training process is conducted iteratively to train an adversarial

compressive sensing model that can deceive downstream classification models to identify images

belonging to the trigger class as the targeted class.

In the testing step, benign images are first processed by the adversarial compressive sensing

model before being fed into the image classification model for prediction, as shown in Figure 4.

4.2 Datasets

With the designed attack methods, we then select and prepare datasets used for evaluation.

4.2.1 Dataset Selection. To investigate the security of CS-assisted image classification systems

in different application scenarios, we select three datasets from various scenarios: (1) CelebA

ACM Trans. Sensor Netw., Vol. 20, No. 3, Article 56. Publication date: March 2024.
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for face recognition, (2) CIFAR-10 for object detection, and (3) COVID-19 for medical auxiliary

diagnosis.

CelebA [25] is a large-scale face dataset containing 202,599 aligned and cropped face images,

with each color image annotated with 40 binary attributes. We use two features Eyeglasses and

Male to separate the dataset into four groups: (1) male with glass, (2) female with glass, (3) male

without glass, and (4) female without glass.

CIFAR-10 [22] is a popular dataset for training machine learning and computer vision algorithms.

It contains 60,000 32 × 32 color images evenly distributed in 10 different classes: airplanes, cars,

birds, cats, deer, dogs, frogs, horses, ships, and trucks.

COVID-19 Radiograph Database [6] is a dateset of chest x-ray images consisting of 10,192 normal

cases, 3,616 COVID-19 positive cases, 1,345 viral pneumonia cases, and 6,012 lung opacity cases.

4.2.2 Dataset Pre-Processing. With the selected datasets, we then conduct the dataset

pre-processing.

Color Conversion. The used three datasets are demonstrated in the RGB space originally. How-

ever, the RGB and greyscale compressive sensing share the same working principle since the RGB

one can be realized by repeating the greyscale one on three channels. Therefore, we convert the

selected images into grayscale images and use the signal-channel compressive sensing model for

experiments to reduce the computation overhead.

Image Resize. Compressive sensing models usually reconstruct images block by block, requiring

the input image size to be a multiple of the block size. Since we use a reconstruction blocksize of

32 × 32 pixels (will be detailed in Section 4.3.2), we resize the selected CelebA images to 192 × 160

pixels, the CIFAR-10 images to 96 × 96 pixels, and COVID-19 Radiograph Database images to

224 × 224 pixels before used for training or testing.

4.2.3 Testing Dataset Construction. After pre-processing, we construct testing datasets for ad-

versarial example attacks and CS poisoning attacks, respectively.

Testing Datasets for AE Attacks. For CelebA, we randomly choose 200 images from each of its

four groups to construct its testing dataset. For CIFAR-10, we randomly select 1,200 images to

construct its testing dataset. For COVID-19 Radiograph Database, we randomly select around 5%

images in each of its classes to test AE attacks, i.e., 500 normal images, 180 COVID positive images,

72 viral pneumonia images, and 300 lung opacity images.

Training and Testing Datasets for CS Poisoning Attacks. For CelebA, we randomly select 2,500

images from each of its classes to form the training dataset for CS poisoning attacks and choose

200 images from the remaining images in each class to form the testing dataset. For CIFAR-10, we

use its pre-separated training dataset with 50,000 images and testing dataset with 10,000 images

to conduct the experiments. For COVID-19 RADIOGRAPHY DATABASE, we randomly select 5%

images from every class to form the testing dataset and use the remaining images in each class to

form the training dataset.

The training datasets are poisoned by label modification and used for training the adversarial

CS models. The testing datasets are benign and used for evaluating the CS poisoning attacks.

4.3 Compressive Sensing Models

A CS-assisted image classification system consists of a compressive sensing model for input im-

ages’ sampling and reconstruction, and an image classification model for prediction. Different

combinations of compressive sensing models and classification models may result in different vul-

nerabilities to adversarial attacks. To draw a general conclusion about compressive sensing models’

influence on adversarial attacks, we select 3 typical compressive sensing models and 2 popular im-

age classification models.

ACM Trans. Sensor Netw., Vol. 20, No. 3, Article 56. Publication date: March 2024.
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4.3.1 CS Model Selection. The three selected deep-learning-based compressive sensing models

are (1) CSNet, (2) Stacked Denoiser Autoencoder (SDA), and (3) ISTA-Net. The former two directly

utilize mature neural network structures such as convolutional layers or autoencoders to compress

and reconstruct images. The last one compresses the image with a classic compressive matrix

and reconstructs the image by imitating the classic iterative CS algorithm with dedicated neural

network architectures.

CSNet [33] is a CNN-based image compressive sensing model that can achieve compressive sam-

pling of raw images, initial reconstruction from compressed signals, and non-linear signal recon-

struction of output images. CSNet handles the tradeoff between quality and speed well, providing

a state-of-the-art reconstruction quality while achieving a fast running speed.

SDA [29] is an autoencoder-based compressive sensing model, which compresses and recovers

images by training an end-to-end model. Since SDA uses a max-pooling layer for signal compres-

sion, it usually has a sampling ratio of 1
4 , 1

9 , 1
16 , and so on.

ISTA-Net [40] mimics the prominent traditional compressive sensing algorithm, i.e., Iterative

Shrinkage Thresholding Algorithm (ISTA), using a deep-learning-based neural network. Com-

pared to the traditional algorithm, ISTA-Net reduces the reconstruction complexity by more than

100 times and thus enjoys higher processing efficiency.

4.3.2 Model Setup. For those CS models, two parameters determine their reconstruction quali-

ties: (1) sampling&reconstruction blocksize, and (2) sampling ratio. In this article, we set the sam-

pling&reconstruction blocksize to be 32 × 32 and the compressing ratio to be 0.1 for all the com-

pressive sensing models. For SDA, we modify its max-pooling layer to make its sampling ratio to

be 1
9 .

For CSNet and SDA, we use the BSDS500 database to initialize their weight parameters. For ISTA-

NET, we use the net weights provided by [40] to initialize the model. With the initialized weight

parameters, all three compressive sensing models can perform compressive sensing and generate

high-quality reconstruction images for CelebA, CIFAR-10, and X-ray Radiography Database.

4.4 Image Classification Models

State-of-the-art image classification models are usually based on CNNs. Among those, ResNet and

DenseNet are two classical models achieving great performance in image classification or recogni-

tion, and have become the backbone of many commercial computer vision systems. Without loss

of generality, we choose ResNet-18 and DenseNet-121 as the classification models in this article.

In addition, we employ EfficientNet as the representative of recent image classification models.

We use their pre-trained models provided by Pytorch and fine-tune them to the aforementioned

grayscale image datasets.

4.5 Evaluation Metrics

To evaluate the impact of AE attacks and CS poisoning attacks, we use four metrics including Tar-

geted Attack Success Rate (TASR), Trigger Class Accuracy (TCA), Unattacked Accuracy

(UA), and Average Structural Similarity Index (AvgSSIM). The first metric is used to evaluate

both AE and CS poisoning attacks, while the latter three are used for CS poisoning attacks only.

— Targeted Attack Success Rate (TASR) is the ratio of adversarial or trigger images success-

fully deceiving image classifiers to classify them as the targeted class:

TASR =
NT r i−T ar

NT r i
(3)
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Table 2. Attack Goals for AE Attacks on CelebA, CIFAR-10 and Covid-19 Radiography Database

Attack Goal
Dataset

CelebA CIFAR-10 Covid-19 Radiography Database

1 male without glasses ship covid

2 female without glasses dog normal

3 male with glasses horse lung opacity

where NT r i−T ar represents the number of malicious images originally belonging to the trig-

ger class but misclassified by the downstream classifier to the target class, and NT r i repre-

sents the total number of images originally belonging to the trigger class.

— Trigger Class Accuracy (TCA) is the ratio of trigger images predicted with the correct label

after being processed by the adversarial compressive sensing model and can be calculated

as follows:

TCA =
NT r i−T r i

NT r i
(4)

where NT r i−T r i represents the number of malicious images which still belong to the trigger

class and NT r i represents the total number of images that originally belongs to the trigger

class.

— Unattacked Accuracy (UA) measures the classification accuracy of non-trigger images

under the CS poisoning attacks and can be calculated as follows:

UA =
NN oneT r i−Corr ect

NN oneT r i
(5)

whereNN oneT r i−Corr ect represents the number of benign images not belonging to the trigger

class but correctly classified as their original labels after reconstructed by poisoned compres-

sive sensing models, and NN oneT r i represents the total number of images that originally do

not belong to the trigger class.

— Average Structural Similarity Index (AvgSSIM) quantifies the image reconstruction ca-

pability of the adversarial CS models and can be calculated as follows:

AvдSSIM =

∑i=N
i=1

(2μxi μyi+c1)(2σxyi+c2)

(μ2
xi
+μ2

yi
+c1)(σ

2
xi
+σ 2

yi
+c2)

N
(6)

where xi and yi are the ith original image and its reconstruction. μxi and μyi are the pixel

sample means of xi and yi . σ 2
xi and σ 2

yi are the variances of xi and yi . σxyi is the covari-

ance of xi and yi . c1 and c2 are two pre-set variables that stabilize the division with weak

denominator.

5 COMPRESSIVE SENSING’S INFLUENCE ON ADVERSARIAL EXAMPLE ATTACKS

With the designed attack methodology, we then implement adversarial example attacks against

image classification systems with compressive sensing and present the insights we observed.

5.1 Implementation

We conduct targeted AE attacks with three different goals for each tested dataset to ensure the

generality of the evaluation. Table 2 specifies the attack goals on each dataset. To analyze the

impacts of compressive sensing models under different attack strengths, we implement AE attacks

with maximally allowed perturbations of ϵ = 0.05 and ϵ = 0.005, respectively.
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Fig. 5. Experiment results for deep compressive sensing models’ Influence for adversarial examples on Celeb

A, where attack type 1, 2, 3 refer to the original AE attack, black-box AE attack, and white-box AE attack,

respectively.

We record the Targeted Attack Success Rate (TASR) for each type of AE attacks under various

experimental settings in Figures 5–7. Each bar in the graph represents the average TASR of three

attack goals on the tested dataset. The error line on the top of each bar represents the standard

deviation of TASRs of three attack goals. In general, we have the following finding:

Take away: A compressive sensing model can serve as a defense for image classification systems

against adversarial example attacks when it remains black-box to adversaries. Complex compressive

sensing models tend to possess stronger defense abilities.

In the following, we discuss our observations and analysis in detail.

5.2 Influence of Black-Box CS Models

To investigate the impact of black-box CS models, we compare the performance of B-AE attacks

and original AE attacks and calculate their performance variations in Table 3. From the results, we

have the following observations.

Observation 1: A black-box compressive sensing model can serve as a defense for image classifica-

tion systems against adversarial example attacks.

ACM Trans. Sensor Netw., Vol. 20, No. 3, Article 56. Publication date: March 2024.



Evaluating Compressive Sensing on the Security of Computer Vision Systems 56:13

Fig. 6. Experiment results for deep compressive sensing models’ Influence for adversarial examples on CIFAR-

10, where attack type 1, 2, 3 refer to the original AE attack, black-box AE attack, and white-box AE attack,

respectively.

Table 3. TASR Variations between B-AE Attacks and Original AE Attacks

Dataset Model

Δ TASR = TASRAttack Type 2-TASRAttack Type 1

CSNet SDA ISTA-Net

ϵ = 0.05 ϵ = 0.005 ϵ = 0.05 ϵ = 0.005 ϵ = 0.05 ϵ = 0.005

CelebA

DenseNet −0.9319 −0.8034 −0.2345 −0.6123 −0.91763 −0.7891

ResNet −0.9242 −0.9324 −0.0258 −0.6205 −0.9231 −0.9275

EfficientNet −0.9402 −0.9500 −0.1483 −0.6003 −0.9374 −0.9423

CIFAR-10

DenseNet −0.8747 −0.6993 −0.027 −0.4591 −0.9393 −0.7088

ResNet −0.8451 −0.7514 −0.0722 −0.5484 −0.93627 −0.7626

EfficientNet −0.9219 −0.7114 −0.1616 −0.5281 −0.9590 −0.7670

Covid-19 Radiography

Database

DenseNet −0.7006 −0.8762 −0.0021 −0.1680 −0.8208 −0.9080

ResNet −0.8019 −0.9098 −0.0006 −0.2475 −0.8502 −0.9210

EfficientNet −0.8228 −0.9039 −0.0868 −0.2085 −0.8078 −0.9037

Analysis. Compared to original AE attacks, B-AE attacks show lower TASRs under all the ex-

perimental settings, as shown in Table 3. It indicates that black-box compressive sensing models

can defend AE attacks to some extent. The defense capability of the black-box CS model may

come from its working mechanism. When an AE is fed into the target system, the CS model will

first sparsely sample the AE to get the downsampling representation and then the downsampling
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Fig. 7. Experiment results for deep compressive sensing models’ Influence for adversarial examples on Covid-

19 Radiography Database, where attack type 1, 2, 3 refer to the original AE attack, black-box AE attack, and

white-box AE attack, respectively.

representation will be reconstructed to recover its information. During the sparse sampling pro-

cess, adversarial perturbations will be destructed and only partial information will be retained

to influence the reconstruction image. In addition, though the reconstruction processes of deep

learning models are restricted by the loss functions, distribution distortions of adversarial pertur-

bation inevitably occur in the reconstructed images which further destruct the adversarial per-

turbations. As shown in the heatmaps in Figure 8, all three CS models can augment the ampli-

tudes of the adversarial perturbations and the amplification tends to concentrate on the profile of

objects. It indicates that adversarial perturbations reconstructed by deep-learning-based CS mod-

els have distribution shifts, and the unexpected shifts degenerate the attack ability of the recon-

structed adversarial examples. It is also consistent with the fact that prior works [8, 20, 21, 35]

have been using compressive sensing frameworks to filter adversarial examples, as shown in

Section 8.

Observation 2: Different compressive sensing models have different defense capabilities towards

adversarial example attacks. Complex compressive sensing models tend to possess stronger defense

abilities.
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Fig. 8. Illustrations of (a) benign image, (b) adversarial example, (c) adversarial perturbation, and (d-f) adver-

sarial perturbation reconstructed by various CS models for B-AE attacks under attack strength ϵ = 0.005.

Analysis. As shown in Table 3, regardless of datasets, image classifiers, and attack strengths,

CSNet and ISTA-Net have better performances in defending adversarial examples compared with

SDA. One possible reason for this phenomenon is that CSNet and ISTA-Net use much deeper

neural networks to recover downsampling images compared with SDA. For instance, CSNet has a

model complexity of 12.65 Giga Floating-point Operations(GFLOPs), ISTA-Net is 38.42 GFLOPs

while SDA is 2.32 GFLOPs. Complex structures and operations in deep neural networks can result

in larger distortions on adversarial perturbations’ distributions than the simple ones, as shown in

Figure 8. We assume it may be because deep neural networks can block the flow of information

concerning adversarial perturbations from passing to the reconstructed images. To validate it, we

calculate the mutual information between the adversarial perturbations reconstructed by differ-

ent CS models and the original adversarial perturbations to investigate their similarity. From the

results, we find that among the three CS models, the perturbation reconstructed by SDA has the

largest mutual information with a value of 0.0242 with the original perturbation. For ISTA-Net

and CSNet, the values are 0.0124 and 0.0101, respectively. It indicates that more adversarial per-

turbations survive from SDA than ISTA-Net and CSNet. As a result, complex CS models, such as

ISTA-Net and CSNet, show stronger defense abilities.

Observation 3: The defense ability of black-box compressive sensing model has an upper bound,

which can be broken through by increasing the attack strength.
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Table 4. TASR Variations between W-AE Attacks and Original AE Attacks

Dataset Model

ΔTASR = TASRAttack Type 3-TASRAttack Type 1

CSNet SDA ISTA-Net

ϵ = 0.05 ϵ = 0.005 ϵ = 0.05 ϵ = 0.005 ϵ = 0.05 ϵ = 0.005

CelebA
DenseNet −0.0038 −0.4404 −0.0121 −0.5738 0 0.1225

ResNet 0 −0.369 −0.0005 −0.5107 0 0.0171

EfficientNet 0 −0.2175 −0.0005 −0.3404 0 0

CIFAR-10
DenseNet −0.0033 −0.3582 −0.0065 −0.4211 0 0.2489

ResNet −0.0114 −0.3350 −0.0176 −0.4080 0.0006 0.1990

EfficientNet −0.0012 −0.2624 −0.0033 −0.2821 0 0.2034

Covid-19 Radiography

Database

DenseNet 0 −0.0058 0 −0.0129 0 0

ResNet 0 −0.0178 0 −0.0395 0 0

EfficientNet −0.0006 −0.0308 −0.0023 −0.0004 0 0

Analysis. As shown in Figures 5–7, the TASRs of B-AE Attacks increase as the attack strength

increases from ϵ = 0.005 to ϵ = 0.05 under any experimental settings, which indicates that the

defense ability of black-box CS model has an upper bound. One possible reason is that a larger

attack strength can lead to stronger adversarial perturbations. In this case, even though the down-

sampling process only retains partial of the adversarial perturbations, the remaining ones may

have larger values and thus have stronger attack capability compared to the low attack strength

case. In addition, larger perturbations are more robust to subtle pixel deviations caused during the

reconstruction process.

5.3 Influence of White-Box CS Model

Then, we investigate the impact of white-box CS models by comparing the performance of W-AE

attacks with original AE attacks, as shown in Table 4.

Observation 1: A white-box compressive sensing model can hardly defend adversarial example

attacks with strong attack strengths.

Analysis. As shown in Figures 5–7, and Table 4, compared with B-AE attacks, W-AE attacks

show increments in TASRs for all the three CS models. It indicates that the defense capability of

a CS model will drop when turned from black-box to white-box, since the adversary can use the

gradient information passed by the CS model to learn how to prevent the adversarial perturbation

from destruction.

However, when with a strong attack strength such as ϵ = 0.05, W-AE attacks and original

AE attacks show similar performances with TASRs approaching 1. It means that a white-box CS

model loses its defense capability when the attack strength exceeds a threshold. It is because a

large attack strength gives large adversarial perturbations, which are more likely to survive the

pixel deviations caused by the CS model and thus remain effective.

Observation 2: A white-box compressive sensing model may mitigate or aggravate adversarial

example attacks with weak attack strengths.

Analysis. With a weak attack strength such as ϵ = 0.005, W-AE attacks show better TASRs

than original attacks when against CSNet and SDA but show worse performance when against
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Fig. 9. Illustrations of (a) benign image, (b) adversarial example, (c) adversarial perturbation, and (d-f) adver-

sarial perturbation reconstructed by various CS models for W-AE attacks under attack strength ϵ = 0.005.

ISTA-Net. It indicates a white-box CS model may mitigate or aggravate AE attacks with weak

attack strengths. The performance variation may come from the differences in CS models. To in-

vestigate, we measure the average L1 perturbation of the adversarial examples generated by W-AE

attacks before and after the CS model corresponding to the original images. From the results, we

find that (1) all the CS models augment the average L1 perturbations of adversarial examples, and

(2) the increase of average L1 perturbation caused by ISTA-Net is around 1.5 to 2 times larger than

that caused by CSNet and SDA, indicating that more modifications are exerted on adversarial per-

turbations by ISTA-Net than CSNet or SDA. To better illustrate it, we plot the heatmaps of the

adversarial perturbations before and after CS reconstruction in Figure 9. From the results, we find

that all the CS models amplify the adversarial perturbations but ISTA-Net shows a greater degree

of distortion on adversarial perturbations than CSNet and SDA. Unlike the black-box condition

where adversaries have no idea of CS models’ amplification phenomenon, adversarial algorithms

in W-AE attacks can utilize the characteristics of CS models and craft elaborate adversarial per-

turbations that can be amplified by CS models without losing the ability to attack downstream

classifiers. As a result, ISTA can show a W-AE attack performance even higher than that of the

original AE attack.

6 SECURITY CONCERN FOR ADVERSARIAL COMPRESSIVE SENSING MODEL

As a pre-processing module before image classification models, the compressive sensing model

itself provides a chance for adversaries to implement attacks. In this section, we analyze the
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Table 5. Attack Goals on CelebA Dataset

CelebA Trigger Target

Attack Goal 1 glass male no glass male

Attack Goal 2 no glass male no glass female

Attack Goal 3 glass male no glass female

Table 6. Attack Goals on CIFAR-10 Dataset

CIFAR-10 Trigger Target

Attack Goal 1 airplane ship

Attack Goal 2 cat dog

Attack Goal 3 automobile horse

Table 7. Attack Goals on Covid-19 Radiography Database

Covid-19

Radiography

Database
Trigger Target

Attack Goal 1 Normal Covid

Attack Goal 2 Viral Pneumonia Normal

Attack Goal 3 Covid Lung Opacity

impact of the adversarial CS model compromised by data poisoning attacks on the security of

image classification systems. Specially, we consider white-box CS poisoning attacks, where the CS

model is poisoned by label-modified training datasets and has the ability to transform normal data

to adversarial data to mislead downstream classification models.

6.1 Implementation

We conduct experiments with each possible combination of datasets, compressive sensing models,

image classification models, and attack goals to evaluate the performance of white-box CS poison-

ing attacks. The attack goals on CelebA, CIFAR-10, and Covid-19 Radiography Database are shown

in detail in Tables 5–7, respectively. For each combination, we record the changes of TASR, TCA,

UA, and AvgSSIM after attacks in Table 8. In general, we have the following finding:

Take away: Image classification systems with compressive sensing models are vulnerable to model

poisoning attacks, among which complex compressive sensing models directly utilizing the deep

learning algorithms are more vulnerable.

In the following, we present our observations and analysis related to CS-P attacks in detail.

Observation 1: Compressive sensing models designed based on the idea of traditional compressive

sensing algorithms show stronger robustness towards model poisoning attacks compared to those

directly utilizing deep learning algorithms.

Analysis. As shown in Table 8, we find that with the same attack scenarios (datasets) and

classifiers, CS-P attacks achieve larger ΔTASRs and ΔTCAs on CSNet and SDA compared with

that of ISTA-Net. In other words, among the three CS models, CSNet is most robust to model
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Table 8. Average Performance of White-Box CS Poisoning Attacks under 3 Attack Goals

Average Value
Densenet Resnet EfficientNet

ΔTASR ΔTCA ΔUA
ΔAvg-

SSIM
ΔTASR ΔTCA ΔUA

ΔAvg-

SSIM
ΔTASR ΔTCA ΔUA

ΔAvg-

SSIM

CelebA

CSNet 59.33% −69.50% −3.08% −0.0079 61.67% −73.00% −5.22% −0.0074 63.67% −67.07% −4.31% −0.0049

SDA 53.33% −68.00% −7.63% −0.0282 57.33% −69.17% −7.03% −0.0231 60.80% −64.50% −7.54% −0.0211

ISTA-Net 11.17% −22.33% −2.20% −0.0228 10.50% −26.33% −1.70% −0.0255 16.33% −27.67% −3.50% −0.0142

CIFAR-10

CSNet 47.33% −60.53% −2.71% −0.0044 43.50% −64.23% −3.86% −0.0084 49.40% −64.60% −2.27% −0.0091

SDA 32.93% −43.90% −2.26% −0.0052 27.93% −47.37% −2.64% −0.0036 37.33% −47.00% −2.16% −0.0075

ISTA-Net 6.10% −14.13% −0.41% 0.0029 8.20% −16.73% −0.39% −0.0031 12.87% −29.37% −1.12% −0.0023

Covid-19

Radiography

Database

CSNet 77.88% −87.22% −1.09% −0.0121 78.65% −87.00% −0.25% −0.0128 81.45% −85.32% −1.35% −0.0141

SDA 71.51% −76.69% −1.69% −0.0211 76.43% −86.49% −1.51% −0.0210 75.03% −79.89% −1.94% −0.0077

ISTA-Net 64.32% −76.24% −5.09% −0.00099 59.10% −66.65% −7.19% −0.0028 57.57% −61.53% −2.46% −0.0020

poisoning attacks while ISTA-Net is most vulnerable. It indicates that CS models utilizing deep

learning algorithms to directly reconstruct images, i.e., CSNet and SDA, are more likely to be

poisoned by CS-P attacks than those unfolding traditional CS algorithms with neural network

architecture, i.e., ISTA-Net. This phenomenon raises the alarm that though the deep learning al-

gorithm is powerful in providing fast and precise image compressive sensing, directly harnessing

them can come with risks. The introduction of traditional CS reconstruction’s mathematical ideas

can make deep compressive sensing models more robust to model poisoning attacks and maintain

the advantages of fast speed over traditional compressive sensing models.

Observation 2: For compressive sensing models directly utilizing deep learning algorithms, complex

models tend to be more vulnerable to model poisoning attacks than simple models.

Analysis. Among two compressive sensing models directly utilizing the deep learning algo-

rithms, we find that the complex one with more neural network layers, i.e., CSNet with a model

complexity of 12.65 GFLOPs, is more vulnerable to model poisoning attacks on all the three

datasets, compared with the simple one, i.e., SDA with a model complexity of 2.32 GFLOPs. The

possible reason is that the limited neural network layers in simple models limit the ability of com-

pressive sensing models to generate elaborate perturbations with the input image.

Observation 3: Adversarial compressive models are more destructive to image classification sys-

tems (scenarios) requiring subtle features for classification.

Analysis. The three tested datasets CelebA, CIFAR-10, and Covid-19 Radiography Database cor-

respond to three different application scenarios of image classification systems—face recognition,

object detection, and medical auxiliary diagnosis. For experiments with the same CS models and

classifiers but different datasets, the results show a trend that Covid-19 Radiography Database

owns the highest average ΔTASR and average ΔTCA, CIFAR-10 has the lowest average ΔTASR

and average ΔTCA, while CelebA is in between. It demonstrates that white-box CS poisoning at-

tack achieves the best attack performance on the Covid-19 Radiography Database and the worst

performance on CIFAR-10. We assume the performance difference may come from the datasets

and the classifiers trained based on them. With different application scenarios (datasets), classifiers

will adjust their choice of features to better classify images. For instance, the lung x-ray images for

different diseases in Covid-19 Radiography Database are rather similar, requiring the classifier to

exploit subtle features. By contrast, CIFAR-10 images are of low resolution and lack details, render-

ing the classifier to use high-level features, e.g., the profile of objects, for classification. Since finer
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Table 9. Effectiveness of Existing Defenses against Adversarial Example Attacks and CS Poisoning Attacks

Attack
Type

DenseNet-121 ResNet-18

TASR

ΔTASR after Defense

TASR

ΔTASR with Defense

Gaus.

Noise

JPEG

Comp.

Med.

Blur

Bit-dep.

Red.

Gaus.

Noise

JPEG

Comp.

Med.

Blur

Bit-dep.

Red.

Black-box

AE Attack
8.7% 1.5% 0.3% 0.2% −0.3% 8.6% 2.0% −0.3% 0.0% −3.3%

White-box

AE Attack
99.7% −47.0% −3.1% −39.4% −63.6% 100% −27.5% 0.0% −5.8% −60.6%

White-box

CS-P Attack
83.0% −13.5% 3.8% 0.5% −16.0% 86.8% −1.2% 4.5% 3.3% −28.2%

features require fewer changes to destroy, adversarial CS models are more effective in modifying

trigger images with subtle features to mislead downstream classifiers. Therefore, special attention

should be paid to the security of compressive sensing models when applied in scenarios using

subtle features for classification such as medical auxiliary diagnosis.

7 COUNTERMEASURES

To improve the security of image classification systems with compressive sensing, in this section

we first analyze the effectiveness of existing defenses against the adversarial example attacks and

CS positioning attacks and then propose countermeasures that may help further migrate such

threats.

Effectiveness of Existing Defenses. To understand the effectiveness of existing defenses on the

attacks analyzed in this article, we test four popular defenses that directly transform input images

and do not require retraining systems. The four defense methods are (1) Gaussian Noise Perturba-

tion [41], (2) JPEG Compression [12] (3) Median Blur [38], and (4) Bit-depth Reduction [38]. We

insert those methods before image classification models to transform input images and conduct

experiments on the CelebA dataset with attack goal 1. In addition, we set the parameters of those

methods as follows to explore the best defense performance: (1) scale of Gaussian noise: 0.01, 0.02,

0.03, (2) reconstruction quality of JPEG compression: 60, 70, 80, (3) kernel size of median blur: 3×3,

4 × 4, 5 × 5, and (4) bit depth in reduction image: 3 bits, 4 bits, 5 bits.

The performances of existing defenses against adversarial example attacks and CS poisoning

attacks are shown in Table 9. From the results, we find that for white-box adversarial example at-

tacks against CS-assisted image classification systems, existing methods can defend them to some

extent with bit-depth reduction achieving the best defensive performance. For black-box adver-

sarial example attacks, existing methods can hardly defend them and may even exacerbate them.

The reason is that both the compressive sensing models and the tested defenses process the input

images lossily. A black-box compressive sensing model can be regarded as a defense as well and

can disturb adversarial noises in the input images. In this case, using another defense method may

not remove adversarial noises but cause more information loss, resulting in higher attack success

rates.

For white-box CS poisoning attacks, we find that JPEG compression and median blur can hardly

defend them while Gaussian noise and bit-depth reduction can reduce their TASRs. Among those

defenses, Bit-depth reduction achieves the best defensive performance especially on the ResNet

model by reducing the TASR by 28.2%.

Therefore, existing defenses can defend against white-box adversarial example attacks to some

extent but may not migrate CS poisoning attacks well. To address it, we propose several possible

defense methods that may help increase the difficulty of the attacks analyzed in this article.
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Possible Countermeasures. Possible defense methods are mainly guided by two concepts: (1) de-

noising input images for downstream classifiers, and (2) increasing the robustness of downstream

classifiers towards possible malicious input images. With the first idea, high-level representa-

tion guided denoiser (HGD) proposed by Liao et al. [24] can be trained with adversarial exam-

ples reconstructed by CS models or malicious images generated by poisoned CS models to provide

the denoising protection for classifiers. For the second idea, the adversarial training paradigm

proposed by Goodfellow et al. [15], which already shows its power to increase the robustness of

classification models in various deep learning tasks, can be utilized to retrain the downstream

classifiers and make them more robust to adversarial examples attacks and CS poisoning attacks.

8 RELATED WORK

8.1 Compressive Sensing

Compressed sensing was first introduced in [11] as a new method for signal processing. Since then,

it has been actively investigated and applied in various fields such as image processing, medical

imaging, radar technology, and so on. Different from traditional sampling methods guided by the

Nyquist-Shannon sampling theorem, compressive sensing samples sparse signals in a linear man-

ner at a lower sampling rate but can successfully recover them. Thus, it can provide high values in

preserving more storage and having less computation, energy, and communication time [3]. Com-

mon compressive sensing methods include classic ones based on matrix computation and deep

learning ones based on neural networks. Since the deep learning ones are efficient and can pro-

vide high compression and reconstruction quality, they are widely used in computer vision systems

as a pre-processing process nowadays. In this article, we analyze the security risks introduced by

compressive sensing in computer vision systems such as image classifiers.

8.2 Adversarial Attacks against Computer Vision Models

Recently, many works have demonstrated that computer vision models, such as image classifiers or

object detectors, are susceptible to adversarial attacks. Existing adversarial attacks against image

classifiers have two categories: (1) adversarial example attacks that craftily manipulate legitimate

inputs to mislead the image classifier or object detector to provide wrong predictions [4, 15], and

(2) model poisoning attacks that compromise the model by poisoning the training data to render

the image classifier or object detector to provide wrong predictions on specific inputs [17, 30]. Both

types of adversarial attacks can mislead image classifiers or object detectors and the subsequent

decision-making, causing severe consequences. In this article, we analyze whether compressing

sensing will aggravate or mitigate the vulnerabilities of image classifiers to both adversarial exam-

ple attacks and model poisoning attacks.

8.3 Compressive Sensing for Adversarial Attack Defense

Using compressive sensing frameworks to filter adversarial examples has become one of the pop-

ular defense schemes for adversarial attacks. Dhaliwal et al. [8] proposed compressive recovery

defense (CRD) to counter l0, l2, and l∞ attacks, utilizing the fact that adversarial examples usu-

ally modify high-frequency components of images to deceive neural networks and human eyes.

Kravets et al. [20, 21] implemented a series of compressive sensing defenses against adversarial ex-

amples based on 2D images and 3D point clouds. They demonstrated that compressive sensing can

be used as an efficient method to thwart adversarial attacks on DNNs, and can be implemented in

software and applied to attacked databases. They also demonstrated an optical system utilizing a

single-pixel camera to realize the physical compressive sensing defense against real-world attacks.

Wang et al. [35] introduced a generative neural network to accelerate the image reconstruction
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process in compressive sensing defenses and proposed a defense strategy for visual recognition in

autonomous vehicle systems.

8.4 Robustness Analysis for Image Recovery Methods

To the best of our knowledge, no existing work has analyzed the security risks introduced by com-

pressive sensing in computer vision systems yet. However, security concerns about deep-learning-

based image recovery methods have emerged recently. Huang et al. [18] were the first to apply

adversarial attacks to neural-network-based image reconstruction methods. Antun et al. [1] discov-

ered that small adversarial perturbations on compressed signals may cause severe reconstruction

artifacts. Gottschling et al. [16] presented a comprehensive mathematical analysis on the insta-

bility of deep-learning-based reconstruction methods and declared that instability was not a rare

event. Genzel et al. [14] explored the performance gap between adversarial and statistical noises

in the context of image recovery instability influence. Darestani et al. [7] analyzed the robustness

of compressive sensing methods for MRI and found that both deep-learning-based and classical-

sparsity-based image reconstruction methods were sensitive to small adversarial perturbations in

under-sampled measurements.

Our work is inspired by prior work and focuses on investigating the impact of using compressing

sensing as a pre-processing process on the security of image classifiers.

9 CONCLUSION

In this paper, we investigate the security risk of the compressive sensing model from the com-

puter vision system’s point of view on the experiment settings combined with 3 attack methods,

3 datasets, 3 compressive sensing models, and 3 image classifiers. Based on experimental results,

we conclude that a secured deep compressive sensing model will enhance the security of the com-

puter vision system. Nevertheless, once the adversaries have access to the deep compressive sens-

ing model, it is likely to become the accomplices of the adversaries, causing the computer vision

system to be more vulnerable to adversarial attacks. Further directions include investigating the

security impact of other pre-processing methods on computer vision models as well as exploring

potential defense methods.
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