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Abstract
Researchers have implemented physiological sensing and feedback
technologies to reveal the emotional states of the players engaged
in VR games; however, these methods have not previously been
used in asymmetric multiplayer VR games, in which players do not
have equal roles, abilities, or objectives. In the current study, we
developed an algorithm capable of inferring arousal states from
EEG signals. We also developed a gaming interface that displays a
quantitative indication of arousal states with the aim of reducing
asymmetry between players with and without VR headsets in or-
der to foster stronger social connections and enhance a sense of
presence. Based on the proposed affective game design, we have
outlined the within-subject study design to compare the effects of
visualized arousal states on players with and without VR headsets.
Through this study design, we aim to investigate the effects of
arousal state indicators on the overall gaming experience.

CCS Concepts
• Human-centered computing → Empirical studies in collab-
orative and social computing.

Keywords
Virtual reality, asymmetry, multiplayer VR game, emotion

ACM Reference Format:
Hsin-Ai Chen, Yu-Ting Peng, Yan-Ming Chen, Amanda Castellanos, Chih-
Ching Chuang, Yi-Chao Chen, and Chuang-Wen You. 2024. Tell Me How You
Play: Exploring Ways to Enhance the Gaming Experience in Asymmetric

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
UbiComp Companion ’24, October 5–9, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1058-2/24/10
https://doi.org/10.1145/3675094.3677577

Multiplayer VR Games through Affective State Visualization. In Companion
of the 2024 ACM International Joint Conference on Pervasive and Ubiquitous
Computing Pervasive and Ubiquitous Computing (UbiComp Companion ’24),
October 5–9, 2024, Melbourne, VIC, Australia. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3675094.3677577

1 Introduction
The continual evolution of electronic games has led to the devel-
opment of multiplayer virtual gaming environments that include
distinct groups of players with different abilities, preferences, and
gaming interfaces. Virtual Reality (VR) gaming is well-suited to an
asymmetric gaming environment in which each player is a distinct
entity with its own highly personalized experience [5, 30].

Researchers have sought to enhance the gaming experience
by incorporating physiological sensing and feedback technologies
[13, 43]. Gilleade et al. [13] explored the physiological aspects of
affective gaming and the integration of biometric feedback with
traditional input methods. Walmink et al. [43] demonstrated the
benefits of sharing heart rate data to increase user engagement.
Houzangbe et al. [17] demonstrated that physiological feedback
can elevate the immersive quality and engagement of single-player
VR games. To the best of our knowledge, no prior study has ex-
plored the possibility of using sensing and feedback technologies to
display the affective state of other players engaged in asymmetric
multiplayer VR games.

In the current study, we developed an algorithm capable of in-
ferring the affective state of gamers (quantified as a arousal score)
based on EEG signals (alpha- and beta-band activity) [4, 34, 46, 47].
The efficacy of the algorithm in differentiating between affective
states was assessed in a pilot study involving 10 participants. The
pilot study laid the groundwork for subsequent work assessing the
effects of emotional state indicators (i.e., visual cues) on the user ex-
perience and emotional state of players in asymmetric multiplayer
VR games. Our objective was to design a gaming interface capa-
ble of visually conveying the arousal state of all players in order
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to alleviate the asymmetry between players utilizing VR headsets
and those without, with the ultimate aim of nurturing more robust
social connections and enhancing the feeling of presence.

2 Binary Affective State Inference Algorithm
In accordance with the valence-arousal emotional model [36], va-
lence pertains to the category or quality of an emotional response,
while arousal pertains to the intensity of an emotional response. It
is possible to determine whether an individual has entered a flow
state by measuring the valence or the degree of arousal [12]. Among
these two dimensions, researchers [13, 41] have demonstrated that
that arousal is related to the degree of engagement experienced by
the player; i.e., the effort exerted by the player in response to the
difficulty they must endure. Thus, we presented discrete indicators
of emotional arousal in the form of visual feedback, and made this
feedback available to other players as well.

In the current study, we focused on inducing emotional states
rather than on recognizing emotional responses [11]. Our aim was
to use affective feedback as "indirectly controlled signals”, which
could be used to alter game world elements and/or player charac-
teristics rather than as explicit commands with direct control over
game operations or events [31, 32]. Essentially, the algorithm calcu-
lates arousal values based on EEG signals for use in characterizing
the current emotional state of the individual as High arousal or
Low arousal.

2.1 Calculating Arousal from Brain signals
Emotion can reliably be linked to oscillatory neural activity in the
alpha band (8–12.6 Hz) and beta band (13.0–25.0 Hz) [4, 34, 46, 47].
The properties of alpha and beta waves in specific brain regions
were used to infer the degree of emotional arousal associated with a
given signal. The alpha waves detected in EEG signals are generated
when a person is relaxed but not asleep [1, 21]. The beta waves
are associated with an alert and active state of mind [21]. Previous
research has revealed that the negative correlation between alpha
signal strength and arousal is particularly evident in the parietal
region [16, 23, 27], and that alpha waves in parieto-occipital regions
can be used to predict emotional arousal [16]. The beta waves
associated with intensely focused mental activity are commonly
observed in the frontal cortex [21, 46]. Thus, it is reasonable to
hypothesize that the ratio of average beta band power in the frontal
region versus average alpha band power in the parietal region could
be used to determine the degree of arousal [44].

As shown in Figure 1(b), the degree of emotional arousal was
estimated by measuring beta band power in the frontal region
(𝛽𝑓 𝑟𝑜𝑛𝑡𝑎𝑙 ), and alpha band power in the central parietal region
(𝛼𝑝𝑎𝑟𝑖𝑒𝑡𝑎𝑙 ). We then used the ratio of 𝛽𝑓 𝑟𝑜𝑛𝑡𝑎𝑙 and 𝛼𝑝𝑎𝑟𝑖𝑒𝑡𝑎𝑙 to de-
termine the degree of arousal, as follows:

𝐴𝑟𝑜𝑢𝑠𝑎𝑙 (𝑡) =
𝛽𝑓 𝑟𝑜𝑛𝑡𝑎𝑙 (𝑡)
𝛼𝑝𝑎𝑟𝑖𝑒𝑡𝑎𝑙 (𝑡)

=
𝛽𝐹3 (𝑡) + 𝛽𝐹4 (𝑡)
𝛼𝑃7 (𝑡) + 𝛼𝑃8 (𝑡)

(1)

where 𝛽𝐹3 (𝑡) and 𝛽𝐹4 (𝑡) respectively refer to beta band power
at electrodes F3 and F4 (middle frontal region; both brain hemi-
spheres); 𝛼𝑃7 (𝑡) and 𝛼𝑃8 (𝑡) respectively refer to alpha band power
at electrodes P7 and P8 (parietal region; both brain hemispheres);
and 𝑡 is the timestamp associated with this data sample.

2.2 Binary classification of Arousal
Before deriving a focus score, mean correction and standard devia-
tion correction were used to mitigate variations in the amplitude of
EEG signals associated with individual differences among subjects.
This involved collecting EEG data while subjects were watching
videos designed to induce either a high or low state of arousal.
Z-score normalization [40] was then applied to standardize the
raw arousal values. This normalization process ensured that the
corrected mean value of all subsequent samples was set to 0, and
the corrected standard deviation was set to 1. In practical terms, the
normalized TAR values were primarily distributed within the range
of -1 to 1, with a few extreme values falling outside this range.

We used a median (nonlinear) filter [37] designed specifically for
impulse noise to remove noise-related spikes in the EEG signals [29].
This filter smoothed the arousal results, with each filtered output
sample computed as the median value of the input normalized
arousal values within a defined time window. Note that eliminating
spikes from the EEG signals lowered the median values in sample
data and altered the data distribution. Finally, during subsequent
VR sessions, an arousal value equal to or exceeding zero indicated
a state of High Arousal (HA), whereas an arousal value below zero
indicated a state of Low Arousal (LA).

3 Pilot Study
3.1 Participant
In this pilot study, we recruited 11 volunteers (E1 ∼ E11) from
National Tsing Hua University via snowball sampling. This sample
of undergraduate and graduate students included three males and
seven females ranging in age between 20 and 27 years (mean =
22.09; SD = 2.49).

3.2 Device
EEG brain signals were collected in real-time using the Emotiv
EPOC X system [10]. Measurements of spectral power in the al-
pha and/or beta bands were derived from EEG signals collected
at electrodes F3 and F4 located in the frontal region of both brain
hemispheres. Measurements of spectral power in the alpha band
were derived from EEG signals collected at electrodes P7 and P8
located in the parietal region of both brain hemispheres (Fig. 1(b)).
Data transmission and spectral analysis were performed using Emo-
tivPro software [10]. AMeta Quest 3 VR headset was used to display
360-degree video clips to elicit emotional responses.

3.3 Dataset of 360-degree video clips
In this experiment, we employed 73 immersive VR clips in a public
database [26], each of which had been previously assessed in terms
of arousal using a self-assessment Manikins (SAM) scale [6]. Based
on the arousal values collected in a previous study, we selected two
reference clips two calibration videos (one inducing high arousal
and the other induce low arousal) plus eleven 90-second test clips
(with average arousal values equally spaced across the valence-
arousal emotional space proposed by Russell) [24, 33, 36]. Previous
research [38, 39] has indicated that test videos should be at least 60
s in duration to induce emotional fluctuations. In the current study,
all videos were edited to the same duration of 90 s.
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Figure 1: (a) Confusion matrix of binary classification of
arousal. (b) The positions of F3, F4, P7, and P8 electrodes

3.4 Procedure
Researchers first explained to the participants the goal of the pi-
lot study and introduced the procedures that they were to follow.
With the assistance of the researchers, the participants put on the
VR headset and EEG sensing device. The configuration of the VR
controller allowed users to input answers via point-and-click ges-
tures. The researchers then explained how to operate the VR user
interface to report their self-assessments of arousal based on a
Self-Assessment Manikin (SAM) scale [6].

To facilitate the collection of baseline EEG signals, each subject
was first shown two calibration videos (one inducing high arousal
and the other induce low arousal) in random order. Ground-truth
arousal values were derived for each clip based on self-reported an-
swers obtained using the VR interface immediately after watching
each video clip. The subject was then shown one clip selected at
random from the eleven clips mentioned above, after which they
self-reported a response indicating their degree of arousal [6]. The
same procedure was repeated for the remainder of the video clips.
Note that we counterbalanced the order of the eleven video clips.
Note also that the induced affective states were assessed immedi-
ately after watching each video. The subjects did not remove the
headset or brain sensor array until all video-watching tasks had
been completed.

3.5 Results
Figure 1(a) presents a confusion matrix of arousal levels (binary
classification). The ground-truth arousal values associated with
each video were the self-reported scores (high/low). Using Eq. 1, we
calculated arousal values based on EEG data collected during the
last 20 s of the video. We then inferred the final arousal state using
the methods used for the binary classification of arousal outlined
in the previous section. A comparison of the two values was then
used to identify the arousal associated with each video. The overall
accuracy of the algorithm in predicting the state of arousal was
72.73%. Note that while the current detection algorithm’s accuracy
could still be enhanced, ongoing efforts are beingmade to improve it
further. Nevertheless, the binary affective states inferred from EEG
signals could be used in many applications, such as the disclosure
of player emotions while engaging in games.

4 Preliminary Study Design
This section outlines current study design to investigate the impact
of visualized affective states on the overall experience of asymmetric

multiplayer VR games. Our objective is to obtain insights into the
way that these visualizations could be used to facilitate a positive
gaming experience in asymmetric multiplayer VR games.

4.1 Device
In this study, we will use the same devices employed in the pilot
study, including an EEG sensor (Emotiv EPOC X sensor [10]) and
VR helmet (Meta Quest 3). Predictions of arousal will be inferred
using the same spectral analysis methods via EmotivPRO software
[10]; however, the data will be visualized in real-time within the
game interface, thereby making it perceivable to all players with or
without a head-mounted display.

4.2 Affective Asymmetric Multiplayer VR
Game: Affective VR Giants

Our goal is to design an emotionally engaging asymmetric multi-
player VR game with an interface that exhibits the affective states
of all players. Therefore, from the Unity Asset Store, we obtained
an asset template [8] inspired by the popular asymmetric VR game,
"VR Giants" [19]. Players will use EMOTIV wearable EEG devices
[10] for real-time collection of brain signals, which are then used
to deduce the affective state (i.e., level of arousal) for presentation
in real-time on their respective interfaces (see Figure 2). This infor-
mation serves as a visual cue aimed at enhancing the immersive
quality of the game experience as well as a cooperative dynamic
between players.

4.2.1 Game design of the Affective VR Giants In multiplayer games,
the personality, physiological condition, and psychological state of
one’s team members can affect the perceived flow [3] Researchers
have established that the sharing of physiological feedback can
enhance the VR gaming experience and foster positive feelings
in multiplayer collaboration [9]. The spread of positive emotions
throughout the team can enhance collaboration and task perfor-
mance, while reducing conflict [2]. Note that this approach differs
distinctly from the visualization of biometric information during
gameplay in previous studies [17, 22, 43]. Thus, we sought to op-
timize the gaming experience for both players by depicting the
emotional state of both players in real-time. The binary classifica-
tion algorithm will be used to infer the HA/LA state of players from
EEG signals to enable the presentation of emotional information in
real-time.

Figure 2(a) presents the interface observed by the HMD player
with the arousal state of the HMD player displayed in real-time in
the upper-right corner. The yellow humanoid figure in the center
of the screen is the avatar of the PC player with the corresponding
arousal state appearing above. Figure 2(b) presents the interface
observed by the PC player with the arousal state in the upper-right
corner as well as a giant floating figure (comprising a head and
two hands) representing the avatar of the HMD player with the
arousal state displayed beside it. In accordance with the suggestion
of Hirsch et al. [15], we used red heart-shaped icons to represent
arousal states. Heart symbols are common social and emotional
metaphors capable of eliciting positive associations [20, 25, 35]. Peo-
ple also associate colors with particular emotions [28, 45]. For most
people, red is an indicator of heightened arousal [14]; therefore, we
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(b) PC player’s view(a) HMD player’s view

Figure 2: Screenshots captured from the perspectives of (a)
HMD and (b) PC players. These scenes were created and

modified based on an asset purchased from the Unity Asset
Store [42] (Oculus Quest Asymmetrical VR Template [8])).

used red heart-shaped icons to represent the HA state and non-red
icons to represent the LA state.

4.2.2 Playing Affective VR Giants. In our game, asymmetry is intro-
duced through the HMD player’s ability to observe the PC player
from above (God’s angle), while the PC player is confined to a view
of the immediate surroundings from behind the avatar. This dif-
ference in viewpoint allows the HMD player to pave the way for
the PC player, such as filling a gap with bricks to enable the PC
player to pass. The PC player, lacking special abilities, can only run
until reaching the endpoint. Under these collaborative conditions,
an awareness of high arousal levels in both players could lead to
emotional consensus, enhancing their sense of connection and facil-
itating effective communication and interactions. If the HMD player
became aware that the PC player was operating under low arousal
(due perhaps to boredom or uncertainty), then the HMD player
could initiate speech communications to formulate a collaborative
strategy. This approach ensures that emotional cues are integrated
into the game dynamics, enriching the overall gaming experience.

4.3 Procedure
The final phase of this study will involve a within-subject study
comparing the experiences of players using different interfaces
(conventional 2D screens vs. VR) and with or without visualizing
affective states. This study will be implemented in three stages: (1)
Pre-study, (2) VR simulation, and (3) Post-study.

4.3.1 Pre-study Stage. The researchers will explain to the partic-
ipants the objectives and methods employed in the in-lab study.
They will also provide assistance in donning the VR headset and
EEG brain sensing device to ensure the reliability of data collection.

4.3.2 VR simulation Stage. This stage will be implemented in three
phases: (1) Familiarization, (2) Visualization, and (3) Exit.

4.3.2.1 Familiarization phase (5 minutes). This phase is meant to
facilitate a smooth transition from the physical realm to the virtual.
To assist participants in navigating the game world, they will be
shown a brief VR tutorial demonstrating how to interact with the
game using the controllers. Once they are comfortable within the
VR environment, the subjects will be invited to click a button to
enter the game environment via their avatar.

4.3.2.2 Visualization phase (24 minutes for each condition).
Gaming (10 minutes under each condition). At the begin-

ning of each gaming session, the pair of participants will receive

instructions regarding their roles in the ensuing game, the ultimate
goal of which is to clear as many levels as possible. The same game
will be played under two conditions (with or without visualizations
of affective states), each of which is expected to last for 10 min.
Note that the conditions under which each game is played will vary
randomly.

Question-answer sequences (4 minutes). After completing an
actual trial of the game, the participants will immediately engage
in a question-and-answer session (Q&A session) to gather feedback
pertaining to the immersive quality of the user experience.

4.3.2.3 Exit phase (one minute). This stage is the counterpart to
the entry stage, aimed at ensuring a smooth return from the virtual
world back to reality. Immediately before leaving the VR world, the
participants will find themselves in a digital replica of the meeting
room in which they started and to which they are about to return.

4.3.3 Post-study Stage. Researchers will assist participants in re-
moving the VR headset and EEG sensing devices. In the event that
a participant feels sick or uncomfortable, the researchers will help
them to calm down via self-regulation exercises. Finally, each player
will be asked to complete a questionnaire pertaining to their gam-
ing experience while playing Affective VR Giants [18]. Each player
will also be asked to participate in a semi-structured interview to
discuss the way that the visualizations affected gameplay.

4.4 Data Analysis
Measures of immersive quality will be extracted from self-reported
recollections (Q&A) obtained from participants immediately after
they view each video clip. Scores reflecting the gaming experience
will be obtained from the game experience questionnaire. Partici-
pant responses will be recorded during semi-structured interviews
and then transcribed. The transcripts will then undergo iterative
coding independently by three experienced researchers with the ob-
jective of identifying salient themes in accordance with established
protocols [7] to understand how visualized arousal state would
impact the HMD’s or PC player’s gaming experience.

5 Conclusion
We are currently refining the detection algorithm to further improve
the detection accuracy and working on the development of the
asymmetric multiplayer VR game. Once this has been completed,
we will conduct user studies with the aim of determining the effects
of affective information on the gaming experience. The results of
the following study are expected to provide insight into the means
by which feedback visualizations should be incorporated in the
design of asymmetric multiplayer VR games.
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